Publications by authors named "Brauweiler A"

Atopic Dermatitis is an inflammatory skin disease associated with broad defects in skin barrier function caused by increased levels of type-2 cytokines (IL-4 and IL-13) that repress keratinocyte (KC) differentiation. Although crucial in mediating allergic disease, the mechanisms for gene repression induced by type-2 cytokines remain unclear. In this study, we determined that gene repression requires the master regulator of the epidermal differentiation program, p63.

View Article and Find Full Text PDF

Staphylococcus aureus is a significant bacterial pathogen that may penetrate through the barrier into the epidermis and dermis of the skin. We hypothesized that the S. aureus cell wall product lipoteichoic acid (LTA) may contribute to the development of inflammation and skin barrier defects; however, the effects of LTA in vivo are not well understood.

View Article and Find Full Text PDF

In chronic nonhealing wounds, the healing process is disrupted and wounds are often infected with bacteria. About 85% of lower extremity amputations in diabetes are attributed to deep infection of foot ulcers. Therefore, infection control is critical for wound care.

View Article and Find Full Text PDF

Staphylococcus aureus is a bacterial pathogen that frequently infects the skin, causing lesions and cell destruction through its primary virulence factor, alpha toxin. Here we show that interferon gamma (IFN-?) protects human keratinocytes from cell death induced by staphylococcal alpha toxin. We find that IFN-? prevents alpha toxin binding and reduces expression of the alpha toxin receptor, a disintegrin and metalloproteinase 10 (ADAM10).

View Article and Find Full Text PDF

Atopic dermatitis (AD) is an inflammatory skin disease characterized by increased T-helper type 2 (Th2) cytokine expression. AD skin lesions are often exacerbated by Staphylococcus aureus-mediated secretion of the lytic virulence factor, alpha toxin. In the current study, we report that alpha toxin-induced cell death is greater in the skin from patients with AD compared with controls.

View Article and Find Full Text PDF

Background: The skin of patients with atopic dermatitis (AD) has defects in keratinocyte differentiation, particularly in expression of the epidermal barrier protein filaggrin. AD skin lesions are often exacerbated by Staphylococcus aureus-mediated secretion of the virulence factor α-toxin. It is unknown whether lack of keratinocyte differentiation predisposes to enhanced lethality from staphylococcal toxins.

View Article and Find Full Text PDF

Background: Patients with atopic dermatitis (AD) with a history of eczema herpeticum have increased staphylococcal colonization and infections. However, whether Staphylococcus aureus alters the outcome of skin viral infection has not been determined.

Objective: We investigated whether S aureus toxins modulated host response to herpes simplex virus (HSV) 1 and vaccinia virus (VV) infections in normal human keratinocytes (NHKs) and in murine infection models.

View Article and Find Full Text PDF

TRC8/RNF139 encodes an endoplasmic reticulum-resident E3 ubiquitin ligase that inhibits growth in a RING- and ubiquitylation-dependent manner. TRC8 also contains a predicted sterol-sensing domain. Here, we report that TRC8 protein levels are sterol responsive and that it binds and stimulates ubiquitylation of the endoplasmic reticulum anchor protein INSIG.

View Article and Find Full Text PDF

An encounter of B cells with cognate self Ags in the periphery can lead to anergy, a condition characterized by altered anatomical localization, shortened life span, and refractility to Ag stimulation. We recently reported that an immature B cell encounter with cognate self-Ag in the bone marrow can also lead to anergy. In this study we show that anergic as well as acutely Ag-stimulated immature B cells are defective in stromal cell-derived factor-1 (SDF-1)-induced calcium mobilization and migration and do not localize to bone marrow following adoptive transfer.

View Article and Find Full Text PDF

TRC8/RNF139 and von Hippel-Lindau (VHL) both encode E3 ubiquitin (Ub) ligases mutated in clear-cell renal carcinomas (ccRCC). VHL, inactivated in nearly 70% of ccRCCs, is a tumor suppressor encoding the targeting subunit for a Ub ligase complex that downregulates hypoxia-inducible factor-alpha. TRC8/RNF139 is a putative tumor suppressor containing a sterol-sensing domain and a RING-H2 motif essential for Ub ligase activity.

View Article and Find Full Text PDF

Mature B cells express a single immunoglobulin Fc receptor, FcgammaRIIB, that functions to block downstream signaling by co-aggregated antigen receptors. Co-aggregation of receptors is essential because BCR activated kinases must phosphorylate FcgammaRIIB to recruit SHIP and mediate inhibitory signals. Pre-B cells also express FcgammaRIIB, but since they do not yet express antigen receptor, it is unclear when they are activated physiologically.

View Article and Find Full Text PDF

The inhibitory IgG receptor, Fc gamma RIIB, blocks signalling by co-aggregated antigen receptors on mature and activated B-cells. Fc gamma RIIB is also expressed by immature B-cells; however, its function on these cells has not been defined. In the present paper, we demonstrate that immature B-cells are highly sensitive to inhibitory signalling mediated by Fc gamma RIIB.

View Article and Find Full Text PDF

FcgammaRIIB functions as an inhibitory receptor to dampen B cell Ag receptor signals and immune responses. Accumulating evidence indicates that ex vivo B cells require the inositol 5-phosphatase, Src homology domain 2-containing inositol 5-phosphatase (SHIP), for FcgammaRIIB-mediated inhibitory signaling. However, we report here that LPS-activated primary B cells do not require SHIP and thus differ from resting B cells.

View Article and Find Full Text PDF

The human T cell leukemia virus type 1 (HTLV-1) oncoprotein Tax interacts with cellular transcription factors to facilitate viral replication in infected cells. Tax binds to the cellular transcription factor CREB and the cellular coactivator protein CBP to form a stable nucleoprotein complex on the viral enhancer elements. The formation of this complex is believed to promote strong Tax-dependent transcriptional activation of viral gene expression.

View Article and Find Full Text PDF

The balanced interplay between positive and negative signals pathways emanating from surface receptors has emerged as a common paradigm for regulation of cell function and the immune response. Here, we will review the recent progress in analysis of signaling pathways initiated upon antigen receptor (BCR) aggregation, and co-aggregation with the inhibitory IgG receptor FcgammaRIIB. Particular attention is paid to the function of the inositol 5-phosphatase SHIP and its effector p62i(Dok), a RasGAP adapter protein.

View Article and Find Full Text PDF

The low-affinity receptor for IgG, FcgammaRIIB, functions broadly in the immune system, blocking mast cell degranulation, dampening the humoral immune response, and reducing the risk of autoimmunity. Previous studies concluded that inhibitory signal transduction by FcgammaRIIB is mediated solely by its immunoreceptor tyrosine-based inhibition motif (ITIM) that, when phosphorylated, recruits the SH2-containing inositol 5'- phosphatase SHIP and the SH2-containing tyrosine phosphatases SHP-1 and SHP-2. The mutational analysis reported here reveals that the receptor's C-terminal 16 residues are also required for detectable FcgammaRIIB association with SHIP in vivo and for FcgammaRIIB-mediated phosphatidylinositol 3-kinase hydrolysis by SHIP.

View Article and Find Full Text PDF

Although the Src homology 2 domain-containing 5' inositol phosphatase (SHIP) is a well-known mediator of inhibitory signals after B cell antigen receptor (BCR) coaggregation with the low affinity Fc receptor, it is not known whether SHIP functions to inhibit signals after stimulation through the BCR alone. Here, we show using gene-ablated mice that SHIP is a crucial regulator of BCR-mediated signaling, B cell activation, and B cell development. We demonstrate a critical role for SHIP in termination of phosphatidylinositol 3,4,5-triphosphate (PI[3,4,5]P(3)) signals that follow BCR aggregation.

View Article and Find Full Text PDF

Coaggregation of Fc gamma RIIB1 with B cell Ag receptors (BCR) leads to inhibition of BCR-mediated signaling via recruitment of Src homology domain 2 (SH2)-containing phosphatases. In vitro peptide binding experiments using phosphotyrosine-containing sequences derived from the immunoreceptor tyrosine-based inhibitory motif (ITIM) known to mediate Fc gamma RIIB1 effects suggest that the receptor uses SH2-containing inositol phosphatase (SHIP) and SH2-containing phosphotyrosine phosphatase (SHP)-1, as well as SHP-2 as effectors. In contrast, coimmunoprecipitation studies of receptor-effector associations suggest that the predominant Fc gamma RIIB1 effector protein is SHIP.

View Article and Find Full Text PDF

The human T-cell leukemia virus type 1 (HTLV-1)-encoded Tax protein activates viral transcription through interaction with the cellular transcription factor CREB (cyclic AMP response element [CRE] binding protein). Although Tax stabilizes the binding of CREB to the Tax-responsive viral CREs in the HTLV-1 promoter, the precise molecular mechanism by which Tax mediates strong transcriptional activation through CREB remains unclear. In this report, we show that Tax promotes high-affinity binding of the KIX domain of CREB binding protein (CBP) to CREB-viral CRE complexes, increasing the stability of KIX in these nucleoprotein complexes by up to 4.

View Article and Find Full Text PDF

The human T-cell leukemia virus-encoded oncoprotein Tax is a potent deregulator of cellular gene expression. Here we report that Tax represses transcription of the human bax gene, a gene whose protein product accelerates apoptosis. This repression is mediated through a 27-bp sequence in the bax promoter that contains a putative basic helix-loop-helix binding site.

View Article and Find Full Text PDF

Tax protein activates transcription of the human T-cell leukaemia virus type I (HTLV-I) genome through three imperfect cyclic AMP-responsive element (CRE) target sites located within the viral promoter. Previous work has shown that Tax interacts with the bZIP element of proteins that bind the CRE target site to promote peptide dimerization, suggesting an association between Tax and bZIP coiled coil. Here we show that the site of interaction with Tax is not the coiled coil, but the basic segment.

View Article and Find Full Text PDF