We investigate the energetic and structural properties of small lithium clusters doped with a carbon atom using a combination of computational methods, including density functional theory (DFT), diffusion quantum Monte Carlo (DMC), and the Hartree-Fock (HF) approximation. We calculate the lowest energy structures, total ground-state energies, electron populations, binding energies, and dissociation energies as a function of cluster size. Our results show that carbon doping significantly enhances the stability of lithium clusters, increasing the magnitude of the binding energy by 0.
View Article and Find Full Text PDFUsing fixed-node diffusion quantum Monte Carlo (FN-DMC) simulation we investigate the electron correlation in all-metal aromatic clusters MAl4(-) (with M = Li, Na, K, Rb, Cu, Ag and Au). The electron detachment energies and electron affinities of the clusters are obtained. The vertical electron detachment energies obtained from the FN-DMC calculations are in very good agreement with the available experimental results.
View Article and Find Full Text PDF