Endosymbiont gene transfer and import of host-encoded proteins are considered hallmarks of organelles necessary for stable integration of two cells. However, newer endosymbiotic models have challenged the origin and timing of such genetic integration during organellogenesis. diatoms contain diazoplasts, closely related to recently-described nitrogen-fixing organelles, that are also stably integrated and co-speciating with their host algae.
View Article and Find Full Text PDFWe identified MMV026468 as a picomolar inhibitor of blood-stage . Phenotyping assays, including isopentenyl diphosphate rescue of parasite growth inhibition, demonstrated that it targets MEP isoprenoid precursor biosynthesis. MMV026468-treated parasites showed an overall decrease in MEP pathway intermediates, which could result from inhibition of the first MEP enzyme DXS or steps prior to DXS such as regulation of the MEP pathway.
View Article and Find Full Text PDFspp. diatoms contain obligate, nitrogen-fixing endosymbionts, or diazoplasts, derived from cyanobacteria. These algae are a rare example of photosynthetic eukaryotes that have successfully coupled oxygenic photosynthesis with oxygen-sensitive nitrogenase activity.
View Article and Find Full Text PDFMicrobiol Spectr
January 2024
We present a protocol to efficiently sequence genomes of the MPXV-causing mpox. This enables researchers and public health agencies to acquire high-quality genomic data using a rapid and cost-effective approach. Genomic data can be used to conduct surveillance and investigate mpox outbreaks.
View Article and Find Full Text PDFBackground: With many global jurisdictions, Toronto, Canada, experienced an mpox outbreak in spring/summer 2022. Cases declined following implementation of a large vaccination campaign. A surge in early 2023 led to speculation that asymptomatic and/or undetected local transmission was occurring in the city.
View Article and Find Full Text PDFspp. diatoms contain obligate, nitrogen-fixing endosymbionts, or "diazoplasts", derived from cyanobacteria. These algae are a rare example of photosynthetic eukaryotes that have successfully coupled oxygenic photosynthesis with oxygen-sensitive nitrogenase activity.
View Article and Find Full Text PDFTechnological advancements in phylodynamic modeling coupled with the accessibility of real-time pathogen genetic data are increasingly important for understanding the infectious disease transmission dynamics. In this study, we compare the transmission potentials of North American influenza A(H1N1)pdm09 derived from sequence data to that derived from surveillance data. The impact of the choice of tree-priors, informative epidemiological priors, and evolutionary parameters on the transmission potential estimation is evaluated.
View Article and Find Full Text PDFA global monkeypox outbreak began in May 2022. Limited data exist on specimen type performance in associated molecular diagnostics. Consequently, a diverse range of specimen sources were collected in the initial weeks of the outbreak in Ontario, Canada.
View Article and Find Full Text PDFFully mycoheterotrophic plants can be difficult to place in plant phylogeny due to elevated substitution rates associated with photosynthesis loss. This potentially limits the effectiveness of downstream analyses of mycoheterotrophy that depend on accurate phylogenetic inference. Although mitochondrial genomic data sets are rarely used in plant phylogenetics, theory predicts that they should be resilient to long-branch artefacts, thanks to their generally slow evolution, coupled with limited rate elevation in heterotrophs.
View Article and Find Full Text PDFBackground: Traditional biomonitoring approaches have delivered a basic understanding of biodiversity, but they cannot support the large-scale assessments required to manage and protect entire ecosystems. This study used DNA metabarcoding to assess spatial and temporal variation in species richness and diversity in arthropod communities from 52 protected areas spanning 3 Canadian ecoregions.
Results: This study revealed the presence of 26,263 arthropod species in the 3 ecoregions and indicated that at least another 3,000-5,000 await detection.
Freshwater biomonitoring programmes routinely sample aquatic macroinvertebrates. These samples are time-consuming to collect, as well as challenging and costly to identify reliably genus or species. Environmental DNA (eDNA) metabarcoding has emerged as a surrogate to traditional collection techniques and has been used in whole-community approaches across several taxa and ecosystems.
View Article and Find Full Text PDFMetabarcoding can rapidly determine the species composition of bulk samples and thus aids biodiversity and ecosystem assessment. However, it is essential to use primer sets that minimize amplification bias among taxa to maximize species recovery. Despite this fact, the performance of primer sets employed for metabarcoding terrestrial arthropods has not been sufficiently evaluated.
View Article and Find Full Text PDFAlthough DNA metabarcoding is an attractive approach for monitoring biodiversity, it is often difficult to detect all the species present in a bulk sample. In particular, sequence recovery for a given species depends on its biomass and mitome copy number as well as the primer set employed for PCR. To examine these variables, we constructed a mock community of terrestrial arthropods comprised of 374 species.
View Article and Find Full Text PDFThe Lennoaceae, a small monophyletic plant family of root parasites endemic to the Americas, are one of the last remaining independently evolved lineages of parasitic angiosperms lacking a published plastome. In this study, we present the assembled and annotated plastomes of two species spanning the crown node of Lennoaceae, Lennoa madreporoides and Pholisma arenarium, as well as their close autotrophic relative from the sister family Ehretiaceae, Tiquilia plicata. We find that the plastomes of L.
View Article and Find Full Text PDFPremise Of The Study: The detection of environmental DNA (eDNA) using high-throughput sequencing has rapidly emerged as a method to detect organisms from environmental samples. However, eDNA studies of aquatic biomes have focused on surveillance of animal species with less emphasis on plants. Pondweeds are important bioindicators of freshwater ecosystems, although their diversity is underestimated due to difficulties in morphological identification and monitoring.
View Article and Find Full Text PDFBackground: Although high-throughput sequencers (HTS) have largely displaced their Sanger counterparts, the short read lengths and high error rates of most platforms constrain their utility for amplicon sequencing. The present study tests the capacity of single molecule, real-time (SMRT) sequencing implemented on the SEQUEL platform to overcome these limitations, employing 658 bp amplicons of the mitochondrial cytochrome c oxidase I gene as a model system.
Results: By examining templates from more than 5000 species and 20,000 specimens, the performance of SMRT sequencing was tested with amplicons showing wide variation in GC composition and varied sequence attributes.
Premise Of The Study: Constructing complete, accurate plant DNA barcode reference libraries can be logistically challenging for large-scale floras. Here we demonstrate the promise and challenges of using herbarium collections for building a DNA barcode reference library for the vascular plant flora of Canada.
Methods: Our study examined 20,816 specimens representing 5076 of 5190 vascular plant species in Canada (98%).
DNA barcoding involves the use of one or more short, standardized DNA fragments for the rapid identification of species. A 648-bp segment near the 5' terminus of the mitochondrial cytochrome oxidase subunit I (COI) gene has been adopted as the universal DNA barcode for members of the animal kingdom, but its utility in mushrooms is complicated by the frequent occurrence of large introns. As a consequence, ITS has been adopted as the standard DNA barcode marker for mushrooms despite several shortcomings.
View Article and Find Full Text PDFEricaceae (the heather family) is a large and diverse group of plants that forms elaborate symbiotic relationships with mycorrhizal fungi, and includes several nonphotosynthetic lineages. Using an extensive sample of fully mycoheterotrophic (MH) species, we explored inter- and intraspecific variation as well as selective constraints acting on the plastomes of these unusual plants. The plastomes of seven MH genera were analysed in a phylogenetic context with two geographically disparate individuals sequenced for Allotropa, Monotropa, and Pityopus.
View Article and Find Full Text PDFTheir relatively slow rates of molecular evolution, as well as frequent exposure to hybridization and introgression, often make it difficult to discriminate species of vascular plants with the standard barcode markers (rbcL, matK, ITS2). Previous studies have examined these constraints in narrow geographic or taxonomic contexts, but the present investigation expands analysis to consider the performance of these gene regions in discriminating the species in local floras at sites across Canada. To test identification success, we employed a DNA barcode reference library with sequence records for 96% of the 5108 vascular plant species known from Canada, but coverage varied from 94% for rbcL to 60% for ITS2 and 39% for matK.
View Article and Find Full Text PDF