Publications by authors named "Bratin Sengupta"

Effective membrane separation of Li from Na and Mg is crucial for lithium extraction from water yet challenging for conventional polymeric membranes. Two dimensional (2D) membranes with ordered laminar structures and tunable physicochemical properties offer distinctive ion-sieving capabilities promising for lithium extraction. Recently, phyllosilicates are introduced as abundant and cost-effective source materials for such membranes.

View Article and Find Full Text PDF

Crystalline materials with uniform molecular-sized pores are desirable for a broad range of applications, such as sensors, catalysis, and separations. However, it is challenging to tune the pore size of a single material continuously and to reversibly distinguish small molecules (below 4 angstroms). We synthesized a series of ionic covalent organic frameworks using a tetraphenoxyborate linkage that maintains meticulous synergy between structural rigidity and local flexibility to achieve continuous and reversible (100 thermal cycles) tunability of "dynamic pores" between 2.

View Article and Find Full Text PDF

Membranes with molecular-sized, high-density nanopores, which are stable under industrially relevant conditions, are needed to decrease energy consumption for separations. Interfacial polymerization has demonstrated its potential for large-scale production of organic membranes, such as polyamide desalination membranes. We report an analogous ultrafast interfacial process to generate inorganic, nanoporous carbon-doped metal oxide (CDTO) nanofilms for precise molecular separation.

View Article and Find Full Text PDF

Two-dimensional (2D) materials provide a great opportunity for fabricating ideal membranes with ultrathin thickness for high-throughput separation. Graphene oxide (GO), owing to its hydrophilicity and functionality, has been extensively studied for membrane applications. However, fabrication of single-layered GO-based membranes utilizing structural defects for molecular permeation is still a great challenge.

View Article and Find Full Text PDF

It is challenging, but constructing hierarchical nanoporous structures with microporous coatings for various important applications, such as entrapment of homogeneous catalysts, size/shape selective catalysis, and so forth, is an urgent need. Moreover, microporous inorganic coatings are particularly desirable because of their excellent stability in organic solvents and at elevated temperatures and pressures. In this study, we design a novel liquid phase interfacial reaction process to form a defect-free, hybrid coating, which can be subsequently converted into microporous coatings, with tunable pore size, on nanoporous materials.

View Article and Find Full Text PDF

A potential bacterium Bacillus flexus RMWW II has been isolated from rice mill effluent, and examined for its decolorizing potential for lignin-mimicking dyes. The biodegradation of alkali lignin by the rod-shaped, Gram-positive, oxidase and catalase-positive Bacillus flexus RMWW II bacteria is due to its uptake of lignin as the sole carbon source. The lignin degradation was 100% at a lignin concentration of 50 mg L but the degradation reduced to 20% at 400 mg L.

View Article and Find Full Text PDF

Rice is one of the imperative staple foods, particularly in the developing countries. The exponential boom in human population has resulted in the continuous expansion in the rice industry in order to meet the food demands. The various stages of paddy processing release huge quantity of solid wastes, mainly rice husk, rice husk ash and liquid wastes in the form of rice industry wastewater.

View Article and Find Full Text PDF