Objective: Recombinant adeno-associated virus (rAAV) vectors are powerful tools for the sustained expression of proteins in vivo and have been successfully used for mechanistic studies in mice. A major challenge associated with this method is to obtain tissue specificity and high expression levels without need of local virus administration.
Methods: To achieve this goal for brown adipose tissue (BAT), we developed a rAAV vector for intravenous bolus injection, which includes an expression cassette comprising an uncoupling protein-1 enhancer-promoter for transcription in brown adipocytes and miR122 target sequences for suppression of expression in the liver, combined with packaging in serotype Rec2 capsid protein.
Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder caused by sarcomeric gene variants and associated with left ventricular (LV) hypertrophy and diastolic dysfunction. The role of the microtubule network has recently gained interest with the findings that -α-tubulin detyrosination (dTyr-tub) is markedly elevated in heart failure. Acute reduction of dTyr-tub by inhibition of the detyrosinase (VASH/SVBP complex) or activation of the tyrosinase (tubulin tyrosine ligase, TTL) markedly improved contractility and reduced stiffness in human failing cardiomyocytes, and thus poses a new perspective for HCM treatment.
View Article and Find Full Text PDFRegulation of systemic PCO is a life-preserving homeostatic mechanism. In the medulla oblongata, the retrotrapezoid nucleus (RTN) and rostral medullary Raphe are proposed as CO chemosensory nuclei mediating adaptive respiratory changes. Hypercapnia also induces active expiration, an adaptive change thought to be controlled by the lateral parafacial region (pF).
View Article and Find Full Text PDFSleep apnoea is a highly prevalent disease that often goes undetected and is associated with poor clinical prognosis, especially as it exacerbates many different disease states. However, most animal models of sleep apnoea (e.g.
View Article and Find Full Text PDFAdeno-associated viruses (AAV) are useful vectors for transducing cells in vitro and in vivo. Targeting of specific cell subsets with AAV is limited by the broad tropism of AAV serotypes. Nanobodies are single immunoglobulin variable domains from heavy chain antibodies that naturally occur in camelids.
View Article and Find Full Text PDFLoss of vision due to progressive retinal degeneration is a hallmark of neuronal ceroid lipofuscinoses (NCL), a group of fatal neurodegenerative lysosomal storage diseases. Enzyme substitution therapies represent promising treatment options for NCLs caused by dysfunctions of soluble lysosomal enzymes. Here, we compared the efficacy of a cell-based enzyme substitution strategy and a gene therapy approach to attenuate the retinal pathology in cathepsin D- (CTSD) deficient mice, an animal model of CLN10 disease.
View Article and Find Full Text PDFThe phospholamban (PLN) p.Arg14del mutation causes dilated cardiomyopathy, with the molecular disease mechanisms incompletely understood. Patient dermal fibroblasts were reprogrammed to hiPSC, isogenic controls were established by CRISPR/Cas9, and cardiomyocytes were differentiated.
View Article and Find Full Text PDFThermoneutral conditions typical for standard human living environments result in brown adipose tissue (BAT) involution, characterized by decreased mitochondrial mass and increased lipid deposition. Low BAT activity is associated with poor metabolic health, and BAT reactivation may confer therapeutic potential. However, the molecular drivers of this BAT adaptive process in response to thermoneutrality remain enigmatic.
View Article and Find Full Text PDFAtrial tachypacing is an accepted model for atrial fibrillation (AF) in large animals and in cellular models. Human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CM) provide a novel human source to model cardiovascular diseases. Here, we investigated whether optogenetic tachypacing of atrial-like hiPSC-CMs grown into engineered heart tissue (aEHT) can induce AF-remodeling.
View Article and Find Full Text PDFLentiviral modification of hematopoietic stem cells (HSCs) paved the way for in vivo experimentation and therapeutic approaches in patients with genetic disease. A disadvantage of this method is the use of a ubiquitous promoter leads not only to genetic modification of the leukocyte subset of interest e.g.
View Article and Find Full Text PDFForce measurements in ex vivo and engineered heart tissues are well established. Analysis of calcium transients (CaT) is complementary to force, and the combined analysis is meaningful to the study of cardiomyocyte biology and disease. This article describes a model of human induced pluripotent stem cell cardiomyocyte-derived engineered heart tissues (hiPSC-CM EHTs) transduced with the calcium sensor GCaMP6f followed by sequential analysis of force and CaT.
View Article and Find Full Text PDFPhosphorylation of cardiac myosin-binding protein C (cMyBP-C), encoded by MYBPC3, increases the availability of myosin heads for interaction with actin thus enhancing contraction. cMyBP-C phosphorylation level is lower in septal myectomies of patients with hypertrophic cardiomyopathy (HCM) than in non-failing hearts. Here we compared the effect of phosphomimetic (D282) and wild-type (S282) cMyBP-C gene transfer on the HCM phenotype of engineered heart tissues (EHTs) generated from a mouse model carrying a Mybpc3 mutation (KI).
View Article and Find Full Text PDFA limiting factor for the use of adeno-associated viruses (AAVs) as vectors in gene therapy is the broad tropism of AAV serotypes, i.e., the parallel infection of several cell types.
View Article and Find Full Text PDFAims: Chronic tachypacing is commonly used in animals to induce cardiac dysfunction and to study mechanisms of heart failure and arrhythmogenesis. Human induced pluripotent stem cells (hiPSC) may replace animal models to overcome species differences and ethical problems. Here, 3D engineered heart tissue (EHT) was used to investigate the effect of chronic tachypacing on hiPSC-cardiomyocytes (hiPSC-CMs).
View Article and Find Full Text PDFNumerous lysosomal enzymes and membrane proteins are essential for the degradation of proteins, lipids, oligosaccharides, and nucleic acids. The gene encodes a lysosomal membrane protein of unknown function, and mutations cause the fatal neurodegenerative lysosomal storage disorder CLN3 (Batten disease) by mechanisms that are poorly understood. To define components critical for lysosomal homeostasis that are affected by this disease, here we quantified the lysosomal proteome in cerebellar cell lines derived from a CLN3 knock-in mouse model of human Batten disease and control cells.
View Article and Find Full Text PDFGenes that are highly conserved in food seeking behaviour, such as protein kinase G (PKG), are of interest because of their potential role in the global obesity epidemic. PKG1α can be activated by binding of cyclic guanosine monophosphate (cGMP) or oxidant-induced interprotein disulfide bond formation between the two subunits of this homodimeric kinase. PKG1α activation by cGMP plays a role in reward and addiction through its actions in the ventral tegmental area (VTA) of the brain.
View Article and Find Full Text PDFMutations in the CLN7/MFSD8 gene encoding the lysosomal membrane protein CLN7 are causative of CLN7 disease, an inherited neurodegenerative disorder that typically affects children. To gain insight into the pathomechanisms of CLN7 disease, we established an immortalized cell line based on cerebellar (Cb) granule neuron precursors isolated from Cln7 mice. Here, we demonstrate that Cln7-deficient neuron-derived Cb cells display an abnormal phenotype that includes increased size and defective outward movement of late endosomes and lysosomes as well as impaired lysosomal exocytosis.
View Article and Find Full Text PDFThe cell adhesion molecule L1 (also known as L1CAM) plays important roles in the mammalian nervous system under physiological and pathological conditions. We have previously reported that proteolytic cleavage of L1 by myelin basic protein leads to the generation of a 70 kDa transmembrane L1 fragment (L1-70) that promotes neuronal migration and neuritogenesis. Here, we provide evidence that L1-70 is imported from the cytoplasm into mitochondria.
View Article and Find Full Text PDFProteolytic cleavage of the neuronal isoform of the murine cell adhesion molecule L1, triggered by stimulation of the cognate L1-dependent signaling pathways, results in the generation and nuclear import of an L1 fragment that contains the intracellular domain, the transmembrane domain, and part of the extracellular domain. Here, we show that the LXXLL and FXXLF motifs in the extracellular and transmembrane domain of this L1 fragment mediate the interaction with the nuclear estrogen receptors α (ERα) and β (ERβ), peroxisome proliferator-activated receptor γ (PPARγ), and retinoid X receptor β (RXRβ). Mutations of the LXXLL motif in the transmembrane domain and of the FXXLF motif in the extracellular domain disturb the interaction of the L1 fragment with these nuclear receptors and, when introduced by viral transduction into mouse embryos in utero, result in impaired motor coordination, learning and memory, as well as synaptic connectivity in the cerebellum, in adulthood.
View Article and Find Full Text PDFHead and neck squamous cell carcinomas (HNSCC) exhibiting resistance to the EGFR-targeting drug cetuximab poses a challenge to their effective clinical management. Here, we report a specific mechanism of resistance in this setting based upon the presence of a single nucleotide polymorphism encoding EGFR-K (K-allele), which is expressed in >40% of HNSCC cases. Patients expressing the K-allele showed significantly shorter progression-free survival upon palliative treatment with cetuximab plus chemotherapy or radiation.
View Article and Find Full Text PDFHuman sera are the first choice as controls for diagnostic applications such as immunoassays, but are limited regarding availability, varying quality, and high costs. In this study, we aimed to circumvent these limitations by the use of a chimeric adaptor molecule comprising the extracellular domains of the human FcγRI (CD64) fused with human IgE Fc domains (CD64-IgE Fc). Allergen-specific antibodies were produced in rabbits using eight different allergens, extracts, and allergen mixtures including mites, pollen, drugs, and food.
View Article and Find Full Text PDFHomozygous or compound heterozygous frameshift mutations in MYBPC3 encoding cardiac myosin-binding protein C (cMyBP-C) cause neonatal hypertrophic cardiomyopathy (HCM), which rapidly evolves into systolic heart failure and death within the first year of life. Here we show successful long-term Mybpc3 gene therapy in homozygous Mybpc3-targeted knock-in (KI) mice, which genetically mimic these human neonatal cardiomyopathies. A single systemic administration of adeno-associated virus (AAV9)-Mybpc3 in 1-day-old KI mice prevents the development of cardiac hypertrophy and dysfunction for the observation period of 34 weeks and increases Mybpc3 messenger RNA (mRNA) and cMyBP-C protein levels in a dose-dependent manner.
View Article and Find Full Text PDFThe cell adhesion molecule L1 is a Lewis(x)-carrying glycoprotein that plays important roles in the developing and adult nervous system. Here we show that myelin basic protein (MBP) binds to L1 in a Lewis(x)-dependent manner. Furthermore, we demonstrate that MBP is released by murine cerebellar neurons as a sumoylated dynamin-containing protein upon L1 stimulation and that this MBP cleaves L1 as a serine protease in the L1 extracellular domain at Arg(687) yielding a transmembrane fragment that promotes neurite outgrowth and neuronal survival in cell culture.
View Article and Find Full Text PDF