Lymph nodes and other secondary lymphoid organs play critical roles in immune surveillance and immune activation in mammals, but the deep internal locations of these organs make it challenging to image and study them in living animals. Here, we describe a previously uncharacterized external immune organ in the zebrafish ideally suited for studying immune cell dynamics , the axillary lymphoid organ (ALO). This small, translucent organ has an outer cortex teeming with immune cells, an inner medulla with a mesh-like network of fibroblastic reticular cells along which immune cells migrate, and a network of lymphatic vessels draining to a large adjacent lymph sac.
View Article and Find Full Text PDFDynein cytoplasmic 1 light intermediate chain 1 (LIC1, ) is a core subunit of the dynein motor complex. The LIC1 subunit also interacts with various cargo adaptors to regulate Rab-mediated endosomal recycling and lysosomal degradation. Defects in this gene are predicted to alter dynein motor function, Rab binding capabilities, and cytoplasmic cargo trafficking.
View Article and Find Full Text PDFCutaneous wounds are common injuries that affect millions of people around the world. In vulnerable populations such as the elderly and those with diabetes, defects in wound healing can lead to the development of chronic open wounds. Although mammalian models are commonly used to study cutaneous wound healing, the challenges of in vivo imaging in mammals have hampered detailed observation of cell coordination and cell signaling during wound healing.
View Article and Find Full Text PDFCutaneous wounds are common afflictions that follow a stereotypical healing process involving hemostasis, inflammation, proliferation, and remodeling phases. In the elderly and those suffering from vascular or metabolic diseases, poor healing after cutaneous injuries can lead to open chronic wounds susceptible to infection. The discovery of new therapeutic strategies to improve this defective wound healing requires a better understanding of the cellular behaviors and molecular mechanisms that drive the different phases of wound healing and how these are altered with age or disease.
View Article and Find Full Text PDFDuring embryonic development, primitive and definitive waves of hematopoiesis take place to provide proper blood cells for each developmental stage, with the possible involvement of epigenetic factors. We previously found that lysine-specific demethylase 1 (LSD1/KDM1A) promotes primitive hematopoietic differentiation by shutting down the gene expression program of hemangioblasts in an Etv2/Etsrp-dependent manner. In the present study, we demonstrated that zebrafish LSD1 also plays important roles in definitive hematopoiesis in the development of hematopoietic stem and progenitor cells.
View Article and Find Full Text PDFThe small monomeric GTPase RHOA acts as a master regulator of signal transduction cascades by activating effectors of cellular signaling, including the Rho-associated protein kinases ROCK1/2. Previous in vitro cell culture studies suggest that RHOA can regulate many critical aspects of vascular endothelial cell (EC) biology, including focal adhesion, stress fiber formation, and angiogenesis. However, the specific in vivo roles of RHOA during vascular development and homeostasis are still not well understood.
View Article and Find Full Text PDFThe zebrafish has become a widely used animal model due, in large part, to its accessibility to and usefulness for high-resolution optical imaging. Although zebrafish research has historically focused mostly on early development, in recent years the fish has increasingly been used to study regeneration, cancer metastasis, behavior and other processes taking place in juvenile and adult animals. However, imaging of live adult zebrafish is extremely challenging, with survival of adult fish limited to a few tens of minutes using standard imaging methods developed for zebrafish embryos and larvae.
View Article and Find Full Text PDFThe pectoral fins of teleost fish are analogous structures to human forelimbs, and the developmental mechanisms directing their initial growth and patterning are conserved between fish and tetrapods. The forelimb vasculature is crucial for limb function, and it appears to play important roles during development by promoting development of other limb structures, but the steps leading to its formation are poorly understood. In this study, we use high-resolution imaging to document the stepwise assembly of the zebrafish pectoral fin vasculature.
View Article and Find Full Text PDFThe ability to carry out high-resolution, high-magnification optical imaging of living animals is one of the most attractive features of the zebrafish as a model organism. However, increasing amounts of pigmentation as development proceeds and difficulties in maintaining sustained immobilization of healthy, living animals remain challenges for live imaging. Chemical treatments can be used to suppress pigment formation and movement, but these treatments can lead to developmental defects.
View Article and Find Full Text PDFEndothelial cells display an extraordinary plasticity both during development and throughout adult life. During early development, endothelial cells assume arterial, venous, or lymphatic identity, while selected endothelial cells undergo additional fate changes to become hematopoietic progenitor, cardiac valve, and other cell types. Adult endothelial cells are some of the longest-lived cells in the body and their participation as stable components of the vascular wall is critical for the proper function of both the circulatory and lymphatic systems, yet these cells also display a remarkable capacity to undergo changes in their differentiated identity during injury, disease, and even normal physiological changes in the vasculature.
View Article and Find Full Text PDFThe preferential accumulation of vascular smooth muscle cells (vSMCs) on arteries versus veins during early development is a well-described phenomenon, but the molecular pathways underlying this polarization are not well understood. In zebrafish, the cxcr4a receptor (mammalian CXCR4) and its ligand cxcl12b (mammalian CXCL12) are both preferentially expressed on arteries at time points consistent with the arrival and differentiation of the first vSMCs during vascular development. We show that autocrine cxcl12b/cxcr4 activity leads to increased production of the vSMC chemoattractant ligand pdgfb by endothelial cells in vitro and increased expression of pdgfb by arteries of zebrafish and mice in vivo.
View Article and Find Full Text PDFRationale: The recent discovery of meningeal lymphatics in mammals is reshaping our understanding of fluid homeostasis and cellular waste management in the brain, but visualization and experimental analysis of these vessels is challenging in mammals. Although the optical clarity and experimental advantages of zebrafish have made this an essential model organism for studying lymphatic development, the existence of meningeal lymphatics has not yet been reported in this species.
Objective: Examine the intracranial space of larval, juvenile, and adult zebrafish to determine whether and where intracranial lymphatic vessels are present.
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe zebrafish has emerged as a valuable and important model organism for studying vascular development and vascular biology. Here, we discuss some of the approaches used to study vessels in fish, including loss-of-function tools such as morpholinos and genetic mutants, along with methods and considerations for assessing vascular phenotypes. We also provide detailed protocols for methods used for vital imaging of the zebrafish vasculature, including microangiography and long-term time-lapse imaging.
View Article and Find Full Text PDFVestigial structures are key indicators of evolutionary descent, but the mechanisms underlying their development are poorly understood. This study examines vestigial eye formation in the teleost Astyanax mexicanus, which consists of a sighted surface-dwelling morph and multiple populations of blind cave morphs. Cavefish embryos initially develop eyes, but they subsequently degenerate and become vestigial structures embedded in the head.
View Article and Find Full Text PDFAnti-angiogenic therapies have generated significant interest for their potential to combat tumor growth. However, tumor overproduction of pro-angiogenic ligands can overcome these therapies, hampering success of this approach. To circumvent this problem, we target the resynthesis of phosphoinositides consumed during intracellular transduction of pro-angiogenic signals in endothelial cells (EC), thus harnessing the tumor's own production of excess stimulatory ligands to deplete adjacent ECs of the capacity to respond to these signals.
View Article and Find Full Text PDFThe post-transcriptional mechanisms contributing to molecular regulation of developmental lymphangiogenesis and lymphatic network assembly are not well understood. MicroRNAs are important post-transcriptional regulators during development. Here, we use high throughput small RNA sequencing to identify miR-204, a highly conserved microRNA dramatically enriched in lymphatic vs.
View Article and Find Full Text PDFThe treatment of lymphatic anomaly, a rare devastating disease spectrum of mostly unknown etiologies, depends on the patient manifestations. Identifying the causal genes will allow for developing affordable therapies in keeping with precision medicine implementation. Here we identified a recurrent gain-of-function ARAF mutation (c.
View Article and Find Full Text PDFSince its introduction, the zebrafish has provided an important reference system to model and study cardiovascular development as well as lymphangiogenesis in vertebrates. A scientific workshop, held at the 2018 European Zebrafish Principal Investigators Meeting in Trento (Italy) and chaired by Massimo Santoro, focused on the most recent methods and studies on cardiac, vascular and lymphatic development. Daniela Panáková and Natascia Tiso described new molecular mechanisms and signaling pathways involved in cardiac differentiation and disease.
View Article and Find Full Text PDFCoding and non-coding mutations in DNA contribute significantly to phenotypic variability during evolution. However, less is known about the role of epigenetics in this process. Although previous studies have identified eye development genes associated with the loss-of-eyes phenotype in the Pachón blind cave morph of the Mexican tetra Astyanax mexicanus, no inactivating mutations have been found in any of these genes.
View Article and Find Full Text PDFThe formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations.
View Article and Find Full Text PDFWiley Interdiscip Rev Dev Biol
May 2018
Hematopoiesis is a complex process with a variety of different signaling pathways influencing every step of blood cell formation from the earliest precursors to final differentiated blood cell types. Formation of blood cells is crucial for survival. Blood cells carry oxygen, promote organ development and protect organs in different pathological conditions.
View Article and Find Full Text PDF