Tissue clearing combined with deep imaging has emerged as a powerful technology to expand classical histological techniques. Current techniques have been optimized for imaging sparsely pigmented organs such as the mammalian brain. In contrast, melanin-rich pigmented tissue, of great interest in the investigation of melanomas, remains challenging.
View Article and Find Full Text PDFDesigned ankyrin repeat proteins (DARPins) are genetically engineered proteins that exhibit high specificity and affinity toward specific targets. Here, the G3-DARPin, which binds the HER2/ receptor, was site-specifically modified with enzymatic methods and Zr-radiolabeled for applications in positron emission tomography (PET). Sortase A transpeptidation was used to install a desferrioxamine B (DFO) chelate bearing a reactive triglycine group to the C-terminal sortase tag of the G3-DARPin, and Zr-radiolabeling produced a novel ZrDFO-G3-DARPin radiotracer that can detect HER2/-positive tumors.
View Article and Find Full Text PDFThe goal of cancer-drug delivery is to achieve high levels of therapeutics within tumors with minimal systemic exposure that could cause toxicity. Producing biologics directly in situ where they diffuse and act locally is an attractive alternative to direct administration of recombinant therapeutics, as secretion by the tumor itself provides high local concentrations that act in a paracrine fashion continuously over an extended duration (paracrine delivery). We have engineered a SHielded, REtargeted ADenovirus (SHREAD) gene therapy platform that targets specific cells based on chosen surface markers and converts them into biofactories secreting therapeutics.
View Article and Find Full Text PDFAims: Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting joints and blood vessels. Despite low levels of low-density lipoprotein cholesterol (LDL-C), RA patients exhibit endothelial dysfunction and are at increased risk of death from cardiovascular complications, but the molecular mechanism of action is unknown. We aimed in the present study to identify the molecular mechanism of endothelial dysfunction in a mouse model of RA and in patients with RA.
View Article and Find Full Text PDFBackground And Aims: Peripheral arterial disease (PAD) is an important cause of morbidity and mortality with little effective medical treatment currently available. Nitric oxide (NO) is crucially involved in organ perfusion, tissue protection and angiogenesis.
Methods: We hypothesized that a novel NO-donor, MPC-1011, might elicit vasodilation, angiogenesis and arteriogenesis and in turn improve limb perfusion, in a hindlimb ischemia model.
Background And Aims: High-density lipoprotein cholesterol (HDL-C) is inversely related to cardiovascular risk. HDL-C raising ester transfer protein (CETP) inhibitors, are novel therapeutics. We studied the effects of CETP inhibitors anacetrapib and evacetrapib on triglycerides, cholesterol and lipoproteins, cholesterol efflux, paraoxonase activity (PON-1), reactive oxygen species (ROS), and endothelial function in E3L and E3L.
View Article and Find Full Text PDFBackground: The residual risk that remains after statin treatment supports the addition of other LDL-C-lowering agents and has stimulated the search for secondary treatment targets. Epidemiological studies propose HDL-C as a possible candidate. Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters from atheroprotective HDL to atherogenic (V)LDL.
View Article and Find Full Text PDFIncreased cyclic stretch to the vessel wall, as observed in hypertension, leads to endothelial dysfunction through increased free radical production and reduced nitric oxide bioavailability. Genetic deletion of the adaptor protein p66(Shc) protects mice against age-related and hyperglycemia-induced endothelial dysfunction, as well as atherosclerosis and stroke. Furthermore, p66(Shc) mediates vascular dysfunction in hypertensive mice.
View Article and Find Full Text PDFCurr Vasc Pharmacol
November 2012
The plasma levels of high-density lipoprotein (HDL) cholesterol are inversely related to cardiovascular risk. Traditional HDL-raising therapies, like fibrates, PPAR-γ agonists, and nicacin, among others, are associated with undesirable side effects, limited efficacy, or have not yet been shown to improve morbidity and mortality on top of statins in clinical outcome trials. A novel pharmacological target for raising circulating HDL-C levels is the cholesterol ester transfer protein (CETP), an enzyme that facilitates the transport of cholesteryl esters and triglycerides between the lipoproteins.
View Article and Find Full Text PDFAims: A marked increase in HDL notwithstanding, the cholesterol ester transfer protein (CETP) inhibitor torcetrapib was associated with an increase in all-cause mortality in the ILLUMINATE trial. As underlying mechanisms remain elusive, the present study was designed to delineate potential off-target effects of torcetrapib.
Methods And Results: Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) rats were treated with torcetrapib (100 mg/kg/day; SHR-T and WKY-T) or placebo (SHR-P and WKY-P) for 3 weeks.