Publications by authors named "Brandye Smith"

The surface of a germanium internal reflectance element (IRE) was modified to bind 6X-histidine (his)-tagged biomolecules. The step-by-step surface modification was monitored via single-pass attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR). Initially an adlayer of 7-octenyltrimethoxysilane (7-OTMS) was formed on the Ge crystal through the surface hydroxyl groups, which were produced via ozonolysis of the Ge surface.

View Article and Find Full Text PDF

Mid-infrared attenuated total internal reflection (ATR) spectra of H(2)16O, H(2)18O and D(2)16O in the liquid state were obtained and normal coordinate analysis was performed based on the potential energy surface obtained from density functional theory (DFT) calculations. Fits of the spectra to multiple Gaussians showed a consistent fit of three bands for the bending region and five bands for the stretching region for three isotopomers, H(2)16O, H(2)18O and D(2)16O. The results are consistent with previous work and build on earlier studies by the inclusion of three isotopomers and mixtures using the advantage of single-pass ATR to obtain high quality spectra of the water stretching bands.

View Article and Find Full Text PDF

The application of single-pass attenuated total reflection Fourier transform infrared (ATR-FT-IR) microscopy was investigated for secondary structure analysis of 15 representative proteins in H2O solution. This is the first reported application of single-pass ATR-FT-IR for protein analysis; thus, the method was validated using transmission FT-IR and multipass ATR-FT-IR as referee methods. The single-pass ATR-FT-IR technique was advantageous since the single-pass geometry permits rapid secondary structure analysis on small volumes of protein in H2O solution without the use of demountable thin path length sample cells.

View Article and Find Full Text PDF

Principal component regression (PCR) was applied to a spectral library of proteins in H2O solution acquired by single-pass attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy. PCR was used to predict the secondary structure content, principally alpha-helical and the beta-sheet content, of proteins within a spectral library. Quantitation of protein secondary structure content was performed as a proof of principle that use of single-pass ATR-FT-IR is an appropriate method for protein secondary structure analysis.

View Article and Find Full Text PDF