Lysophosphatidic acid (LPA) is a bioactive phospholipid that affects various biological functions, such as cell proliferation, migration, survival, wound healing, and tumor invasion through LPA receptors. Previously, we reported that LPA induces A431 colony dispersal, accompanied by disruption of cell-cell contacts and cell migration. However, it remains unclear how LPA affects cell migration and gene expression during A431 colony dispersal.
View Article and Find Full Text PDFPurpose: Metabolism, and especially glucose uptake, is a key quantitative cell trait that is closely linked to cancer initiation and progression. Therefore, developing high-throughput assays for measuring glucose uptake in cancer cells would be enviable for simultaneous comparisons of multiple cell lines and microenvironmental conditions. This study was designed with two specific aims in mind: the first was to develop and validate a high-throughput screening method for quantitative assessment of glucose uptake in "normal" and tumor cells using the fluorescent 2-deoxyglucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG), and the second was to develop an image-based, quantitative, single-cell assay for measuring glucose uptake using the same probe to dissect the full spectrum of metabolic variability within populations of tumor cells in vitro in higher resolution.
View Article and Find Full Text PDFBackground: Matriptase, a type II transmembrane serine protease, has been linked to initiation and promotion of epidermal carcinogenesis in a murine model, suggesting that deregulation of its role in epithelia contributes to transformation. In human prostate cancer, matriptase expression correlates with progression. It is therefore of interest to determine how matriptase may contribute to epithelial neoplastic progression.
View Article and Find Full Text PDFThe extracellular matrix (ECM) is thought to be an essential component of tissue scaffolding and engineering because it fulfills fundamental functions related to cell adhesion, migration, and three-dimensional organization. Natural ECM preparations, however, are challenging to work with because they are comprised of macromolecules that are large and insoluble in their functional state. Functional fragments of ECM macromolecules are a viable answer to this challenge, as demonstrated by the RGD-based engineered scaffolds, where the tri-peptide, Arg-Gly-Asp (RGD), represents the minimal functional unit of fibronectin and related ECM.
View Article and Find Full Text PDFLaminin-332 (Ln-332) is an extracellular matrix molecule that regulates cell adhesion, spreading, and migration by interaction with cell surface receptors such as alpha3beta1 and alpha6beta4. Previously, we developed a function-blocking monoclonal antibody against rat Ln-332, CM6, which blocks hemidesmosome assembly induced by Ln-332-alpha6beta4 interactions. However, the location of its epitope on Ln-332 has remained unclear.
View Article and Find Full Text PDFAdhesion of epithelial cells to basement membranes (BM) occurs through two major structures: actin-associated focal contacts and keratin-associated hemidesmosomes, both of which form on laminin-332 (Ln-332). In epithelial-derived cancer cells, additional actin-linked structures with putative adhesive properties, invadopodia, are frequently present and mediate BM degradation. A recent study proposed that BM invasion requires a proper combination of focal contacts and invadopodia for invading cells to gain traction through degraded BM, and suggested that these structures may compete for common molecular components such as Src kinase.
View Article and Find Full Text PDFBackground: Hepsin is a cell surface protease that is over-expressed in more than 90% of human prostate cancer cases. The previously developed Probasin-hepsin/Large Probasin-T antigen (PB-hepsin/LPB-Tag) bigenic mouse model of prostate cancer demonstrates that hepsin promotes primary tumors that are a mixture of adenocarcinoma and neuroendocrine (NE) lesions, and metastases that are NE in nature. However, since the majority of human prostate tumors are adenocarcinomas, the contribution of hepsin in the progression of adenocarcinoma requires further investigation.
View Article and Find Full Text PDFMapping quantitative cell traits (QCT) to underlying molecular defects is a central challenge in cancer research because heterogeneity at all biological scales, from genes to cells to populations, is recognized as the main driver of cancer progression and treatment resistance. A major roadblock to a multiscale framework linking cell to signaling to genetic cancer heterogeneity is the dearth of large-scale, single-cell data on QCT-such as proliferation, death sensitivity, motility, metabolism, and other hallmarks of cancer. High-volume single-cell data can be used to represent cell-to-cell genetic and nongenetic QCT variability in cancer cell populations as averages, distributions, and statistical subpopulations.
View Article and Find Full Text PDFTumor-microenvironment interactions are increasingly recognized to influence tumor progression. To understand the competitive dynamics of tumor cells in diverse microenvironments, we experimentally parameterized a hybrid discrete-continuum mathematical model with phenotypic trait data from a set of related mammary cell lines with normal, transformed, or tumorigenic properties. Surprisingly, in a resource-rich microenvironment, with few limitations on proliferation or migration, transformed (but not tumorigenic) cells were most successful and outcompeted other cell types in heterogeneous tumor simulations.
View Article and Find Full Text PDFBackground: Traditional in vitro cell invasion assays focus on measuring one cell parameter at a time and are often less than ideal in terms of reproducibility and quantification. Further, many techniques are not suitable for quantifying the advancing margin of collectively migrating cells, arguably the most important area of activity during tumor invasion. We have developed and applied a highly quantitative, standardized, reproducible Nest Expansion Assay (NEA) to measure cancer cell invasion in vitro, which builds upon established wound-healing techniques.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
May 2009
Laminin-332 (Ln-332) is a heterotrimeric glycoprotein (alpha3beta3gamma2) unique to epithelial cells with crucial roles in signaling, adhesion, and migration. Altered localization or expression levels of Ln-332, particularly its gamma2 subunit, are of prognostic value in a variety of cancers. However, the lack of standardized methodology and the limited quantification of previous study results have left unanswered questions, including the role of gamma2 transcript variants and whether differential expression of this chain represents dysregulation of the whole heterotrimer.
View Article and Find Full Text PDFCell migration is essential in many physiological and pathological processes. To understand this complex behavior, researchers have turned to quantitative, in vitro, image-based measurements to dissect the steps of cellular motility. With the rise of automated microscopy, the bottleneck in these approaches is no longer data acquisition, but data analysis.
View Article and Find Full Text PDFBackground: Classical in vitro wound-healing assays and other techniques designed to study cell migration and invasion have been used for many years to elucidate the various mechanisms associated with metastasis. However, many of these methods are limited in their ability to achieve reproducible, quantitative results that translate well in vivo. Such techniques are also commonly unable to elucidate single-cell motility mechanisms, an important factor to be considered when studying dissemination.
View Article and Find Full Text PDFCirculating soluble fibrin (sFn) is elevated in many cancer patients. It is a marker for ongoing disseminated intravascular coagulation and may have prognostic significance. We have demonstrated that sFn inhibited monocyte adherence and cytotoxicity by a mechanism involving blockade of monocyte alphaMbeta2 and tumor cell CD54.
View Article and Find Full Text PDFBackground: Soluble fibrin (sFn) is a marker for disseminated intravascular coagulation and may have prognostic significance, especially in metastasis. However, a role for sFn in the etiology of metastatic cancer growth has not been extensively studied. We have reported that sFn cross-linked platelet binding to tumor cells via the major platelet fibrin receptor alphaIIb beta3, and tumor cell CD54 (ICAM-1), which is the receptor for two of the leukocyte beta2 integrins (alphaL beta2 and aM beta2).
View Article and Find Full Text PDF