Among the L-type calcium channel blockers (CCBs), particularly dihydropyridines like nifedipine [1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylic acid dimethyl ester], a common adverse effect is vasodilatory edema. Newer CCBs, such as the T- and L-type CCB, mibefradil [(1S,2S)-2-[2[[3-(2-benzimidazolylpropyl]methylamino]ethyl]-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphthyl methoxyacetate dihydrochloride hydrate], demonstrate antihypertensive efficacy similar to that of their predecessors but seem to have a reduced propensity to cause edema. Using a magnetic resonance imaging (MRI) T(2) mapping technique, we investigated the ability of mibefradil to reduce extracellular water accumulation caused by the L-type CCB, nifedipine, in the hindleg skeletal muscle of the spontaneously hypertensive rat.
View Article and Find Full Text PDFContemp Top Lab Anim Sci
May 2005
A female, wild-caught, rhesus macaque (Macaca mulatta), in captivity for 23 years and estimated to be older than 26 years, had an 8-year history of progressive spinal curvature. Scoliosis was initially noted 1 year after a therapeutic bilateral ovariectomy to treat endometriosis. Eight years after the initial diagnosis, the curvature had progressed to a structural (nonflexible), lumbar scoliosis with a curvature to the left and a structural thoracolumbar kyphosis.
View Article and Find Full Text PDFImaging modalities such as micro-computed tomography (micro-CT), micro-positron emission tomography (micro-PET), high-resolution magnetic resonance imaging (MRI), optical imaging, and high-resolution ultrasound are rapidly becoming invaluable research tools. These advanced imaging technologies are now commonly used to investigate rodent biology, metabolism, pharmacokinetics, and disease in vivo. Choosing an appropriate anesthetic regimen as well as monitoring and supporting the animal's physiologic balance is key to obtaining images that truly represent the biologic process or disease state of interest.
View Article and Find Full Text PDFOsteoarthritis (OA) is a degenerative disease that is characterized by joint discomfort, loss of articular cartilage, and changes to the subchondral bone. Studies to elucidate the pathophysiology of OA have been hampered by the lack of a rapid, reproducible animal model that mimics the structural changes associated with the disease. A single intra-articular injection of mono-iodoacetate (MIA), an inhibitor of glycolysis, into the femorotibial joint of rodents promotes loss of articular cartilage similar to that noted in human OA.
View Article and Find Full Text PDFOsteoarthritis (OA) is a degenerative joint disease characterized by joint pain and a progressive loss of articular cartilage. Studies to elucidate the pathophysiology of OA have been hampered by the lack of a rapid, reproducible animal model that mimics both the histopathology and symptoms associated with the disease. Injection of mono-iodoacetate (MIA), an inhibitor of glycolysis, into the femorotibial joint of rodents promotes loss of articular cartilage similar to that noted in human OA.
View Article and Find Full Text PDF