Publications by authors named "Brandy Briones"

Behavior differs across individuals, ranging from typical to atypical phenotypes. Understanding how differences in behavior relate to differences in neural activity is critical for developing treatments of neuropsychiatric and neurodevelopmental disorders. One hypothesis is that differences in behavior reflect individual differences in the dynamics of how information flows through the brain.

View Article and Find Full Text PDF

Because opioid withdrawal is an intensely aversive experience, persons with opioid use disorder (OUD) often relapse to avoid it. The lateral septum (LS) is a forebrain structure that is important in aversion processing, and previous studies have linked the lateral septum (LS) to substance use disorders. It is unclear, however, which precise LS cell types might contribute to the maladaptive state of withdrawal.

View Article and Find Full Text PDF

Environmentally appropriate social behavior is critical for survival across the lifespan. To support this flexible behavior, the brain must rapidly perform numerous computations taking into account sensation, memory, motor-control, and many other systems. Further complicating this process, individuals must perform distinct social behaviors adapted to the unique demands of each developmental stage; indeed, the social behaviors of the newborn would not be appropriate in adulthood and vice versa.

View Article and Find Full Text PDF

Improvements in the speed and cost of expression profiling of neuronal tissues offer an unprecedented opportunity to define ever finer subgroups of neurons for functional studies. In the spinal cord, single cell RNA sequencing studies support decades of work on spinal cord lineage studies, offering a unique opportunity to probe adult function based on developmental lineage. While Cre/Flp recombinase intersectional strategies remain a powerful tool to manipulate spinal neurons, the field lacks genetic tools and strategies to restrict manipulations to the adult mouse spinal cord at the speed at which new tools develop.

View Article and Find Full Text PDF

Background: Excessive repetitive behavior is a debilitating symptom of several neuropsychiatric disorders. Parvalbumin-positive inhibitory interneurons in the dorsal striatum have been linked to repetitive behavior, and a sizable portion of these cells are surrounded by perineuronal nets (PNNs), specialized extracellular matrix structures. Although PNNs have been associated with plasticity and neuropsychiatric disease, no previous studies have investigated their involvement in excessive repetitive behavior.

View Article and Find Full Text PDF
Article Synopsis
  • Cholinergic interneurons (ChINs) in the nucleus accumbens play a crucial role in extinguishing associations between drugs and their contexts, particularly for cocaine in male mice.
  • High levels of natural acetylcholine signaling are linked to more effective extinction of drug-context associations, while the plastic changes in medium spiny neurons (MSNs) are observed through the weakening of glutamatergic synapses.
  • The ability to manipulate ChIN activity further influences both the speed of extinction and the synaptic changes in MSNs, suggesting that variations in acetylcholine levels might explain differences in how individuals experience extinction.
View Article and Find Full Text PDF

Adult-born granule cells (abGCs) integrate into the hippocampus and form connections with dentate gyrus parvalbumin-positive (PV+) interneurons, a circuit important for modulating plasticity. Many of these interneurons are surrounded by perineuronal nets (PNNs), extracellular matrix structures known to participate in plasticity. We compared abGC projections to PV+ interneurons with negative-to-low intensity PNNs to those with high intensity PNNs using retroviral and 3R-Tau labeling in adult mice, and found that abGC mossy fibers and boutons are more frequently located near PV+ interneurons with high intensity PNNs.

View Article and Find Full Text PDF

Increases in the number and/or the size of dendritic spines, sites of excitatory synapses, have been linked to different types of learning as well as synaptic plasticity in several brain regions, including the hippocampus, sensory cortex, motor cortex, and cerebellum. By contrast, a previous study reported that training on a maze task requiring the dorsal striatum has no effect on medium spiny neuron dendritic spines in this area. These findings might suggest brain region-specific differences in levels of plasticity as well as different cellular processes underlying different types of learning.

View Article and Find Full Text PDF

The medial prefrontal cortex (mPFC) is important for cognitive flexibility, the ability to switch between two task-relevant dimensions. Changes in neuronal oscillations and alterations in the coupling across frequency ranges have been correlated with attention and cognitive flexibility. Here we show that astrocytes in the mPFC of adult male Sprague Dawley rats, participate in cognitive flexibility through the astrocyte-specific Ca2+ binding protein S100β, which improves cognitive flexibility and increases phase amplitude coupling between theta and gamma oscillations.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is often associated with cognitive deficits and excessive anxiety. Neuroimaging studies have shown atypical structure and neural connectivity in the hippocampus, medial prefrontal cortex (mPFC), and striatum, regions associated with cognitive function and anxiety regulation. Adult hippocampal neurogenesis is involved in many behaviors that are disrupted in ASD, including cognition, anxiety, and social behaviors.

View Article and Find Full Text PDF

A variety of experiences have been shown to affect the production of neurons in the adult hippocampus. These effects may be mediated by experience-driven hormonal changes, which, in turn, interact with factors such as sex, age and life history to alter brain plasticity. Although the effects of physical experience and stress have been extensively characterized, various types of social experience across the lifespan trigger profound neuroendocrine changes in parallel with changes in adult neurogenesis.

View Article and Find Full Text PDF