Publications by authors named "Brandon Wood"

Aqueous corrosion of metals is governed by formation and dissolution of a passivating, multi-component surface oxide. Unfortunately, a detailed atomistic description is challenging due to the compositional complexity and the need to consider multiple kinetic factors simultaneously. To this end, we combine experiments with a first-principles-derived, multiscale computational framework that transcends thermodynamic descriptions to explicitly simulate the kinetic evolution of surface oxides of Ni-Cr alloys as a function of composition, temperature, pH, and applied voltage.

View Article and Find Full Text PDF

Grain boundaries (GBs) profoundly influence the properties and performance of materials, emphasizing the importance of understanding the GB structure and phase behavior. As recent computational studies have demonstrated the existence of multiple GB phases associated with varying the atomic density at the interface, we introduce a validated, open-source GRand canonical Interface Predictor (GRIP) tool that automates high-throughput, grand canonical optimization of GB structures. While previous studies of GB phases have almost exclusively focused on cubic systems, we demonstrate the utility of GRIP in an application to hexagonal close-packed titanium.

View Article and Find Full Text PDF

Pitting corrosion in seawater is one of the most difficult forms of corrosion to identify and control. A workhorse material for marine applications, 316L stainless steel (316L SS) is known to balance resistance to pitting with good mechanical properties. The advent of additive manufacturing (AM), particularly laser powder bed fusion (LPBF), has prompted numerous microstructural and mechanical investigations of LPBF 316L SS; however, the origins of pitting corrosion on as-built surfaces is unknown, despite their utmost importance for certification of LPBF 316L SS prior to fielding.

View Article and Find Full Text PDF

Twenty-eight cranberry farms in southwestern British Columbia were investigated for the prevalence and spatial distribution of fungal pathogens that contribute to fruit rot incidence. Farms were selected from six regions where most cranberry production is concentrated. Flowers, and green and ripe fruit (var.

View Article and Find Full Text PDF

Quantifying the level of atomic disorder within materials is critical to understanding how evolving local structural environments dictate performance and durability. Here, we leverage graph neural networks to define a physically interpretable metric for local disorder, called SODAS. This metric encodes the diversity of the local atomic configurations as a continuous spectrum between the solid and liquid phases, quantified against a distribution of thermal perturbations.

View Article and Find Full Text PDF

Metal boride nanostructures have shown significant promise for hydrogen storage applications. However, the synthesis of nanoscale metal boride particles is challenging because of their high surface energy, strong inter- and intraplanar bonding, and difficult-to-control surface termination. Here, it is demonstrated that mechanochemical exfoliation of magnesium diboride in zirconia produces 3-4 nm ultrathin MgB nanosheets (multilayers) in high yield.

View Article and Find Full Text PDF

The conducting of universal mental health screening is one widely endorsed practice suitable for use within P-12 school settings to more proactively identify children and young people experiencing or displaying characteristics of a mental health disorder. Absent routine screening, many school-age youth with mental health concerns, especially those of an internalizing nature, may go unidentified and left without timely treatment, support, and services. The current study, which employed survey methodology with principal respondents from four Midwestern states, primarily sought to contribute to and update the literature on the universal mental health screening practice habits of P-12 schools.

View Article and Find Full Text PDF

Batteries based on solid-state electrolytes, including LiLaZrO (LLZO), promise improved safety and increased energy density; however, atomic disorder at grain boundaries and phase boundaries can severely deteriorate their performance. Machine-learning (ML) interatomic potentials offer a uniquely compelling solution for simulating chemical processes, rare events, and phase transitions associated with these complex interfaces by mixing high scalability with quantum-level accuracy, provided that they can be trained to properly address atomic disorder. To this end, we report the construction and validation of an ML potential that is specifically designed to simulate crystalline, disordered, and amorphous LLZO systems across a wide range of conditions.

View Article and Find Full Text PDF

Nanoencapsulation using graphene derivatives enables the facile fabrication of two-dimensional (2D) nanocomposites with unique microstructures and has been generally applied to many fields of energy materials. Particularly, metal hydrides such as MgH encapsulated by graphene derivatives have emerged as a promising hybrid material for overcoming the disadvantageous properties of Mg-based hydrogen storage. Although the behavior of the graphene-Mg nanoencapsulation interface has been studied for many composite materials, the direct modification of graphene with nonmetal foreign elements for changing the interfacial behavior has been limitedly reported.

View Article and Find Full Text PDF

Solid-state hydrogen storage materials often operate via transient, multistep chemical reactions at complex interfaces that are difficult to capture. Here, we use direct molecular dynamics simulations at accelerated temperatures and hydrogen pressures to probe the hydrogenation chemistry of the candidate material MgB without assumption of reaction pathways. Focusing on highly reactive (101̅0) edge planes where initial hydrogen attack is likely to occur, we track mechanistic steps toward the formation of hydrogen-saturated BH units and key chemical intermediates, involving H dissociation, generation of functionalities and molecular complexes containing BH and BH motifs, and B-B bond breaking.

View Article and Find Full Text PDF

Complex borohydrides such as Mg(BH) offer one of highest capacities to chemically store hydrogen for onboard applications; however, it suffers greatly from kinetic constraints that prevent realization of full capacity and reversibility. Understanding these kinetic limitations solely from experiments is extremely challenging due to the unusual complexity of various competing elemental reaction steps involved during the de/rehydrogenation reaction. This work aims to map out the energetics associated with initial dehydrogenation of Mg(BH) from first-principles simulations and to identify the preferred reaction pathways.

View Article and Find Full Text PDF
Article Synopsis
  • Ion (de)hydration is crucial for processes like corrosion and energy storage, but its kinetics are hard to predict using traditional methods.
  • Current approaches rely on static measures like hydration energy, which don't adequately reflect the dynamics of the hydration shell affecting ion transfer rates.
  • This study introduces dynamic metrics from molecular dynamics simulations, providing a better understanding of hydration shell properties and their impact on ion (de)hydration, indicating that dynamic descriptors are essential for accurately describing these processes.
View Article and Find Full Text PDF
Article Synopsis
  • Layered boron compounds show potential for various applications due to their unique surface properties linked to boron atom arrangements.
  • Recent research on MgB reveals that multiple disordered surface configurations are not only thermodynamically favorable but also kinetically accessible, challenging previous assumptions about boron surfaces.
  • The study validates these findings through the characterization of nanosheets and discusses implications for improving applications, especially in hydrogen storage.
View Article and Find Full Text PDF

Lithium-rich oxychloride antiperovskites are promising solid electrolytes for enabling next-generation batteries. Here, we report a comprehensive study varying Li concentrations in [Formula: see text] using molecular dynamics simulations. The simulations accurately capture the complex interactions between Li vacancies ([Formula: see text]), the dominant mobile species in [Formula: see text].

View Article and Find Full Text PDF

Superionic solid electrolytes have widespread use in energy devices, but the fundamental motivations for fast ion conduction are often elusive. In this Perspective, we draw upon atomistic simulations of a wide range of superionic conductors to illustrate some ways frustration can lower diffusion cation barriers in solids. Based on our studies of halides, oxides, sulfides and hydroborates and a survey of published reports, we classify three types of frustration that create competition between different local atomic preferences, thereby flattening the diffusive energy landscape.

View Article and Find Full Text PDF

Cu-based catalysts currently offer the most promising route to actively and selectively produce value-added chemicals via electrochemical reduction of CO (eCOR); yet further improvements are required for their wide-scale deployment in carbon mitigation efforts. Here, we systematically investigate a family of dilute Cu-based alloys to explore their viability as active and selective catalysts for eCOR through a combined theoretical-experimental approach. Using a quantum-classical modeling approach that accounts for dynamic solvation effects, we assess the stability and activity of model single-atom catalysts under eCOR conditions.

View Article and Find Full Text PDF

The highly unfavorable thermodynamics of direct aluminum hydrogenation can be overcome by stabilizing alane within a nanoporous bipyridine-functionalized covalent triazine framework (AlH @CTF-bipyridine). This material and the counterpart AlH @CTF-biphenyl rapidly desorb H between 95 and 154 °C, with desorption complete at 250 °C. Sieverts measurements, Al MAS NMR and Al{ H} REDOR experiments, and computational spectroscopy reveal that AlH @CTF-bipyridine dehydrogenation is reversible at 60 °C under 700 bar hydrogen, >10 times lower pressure than that required to hydrogenate bulk aluminum.

View Article and Find Full Text PDF

Lithium-ion batteries (LIBs) represent the state of the art in high-density energy storage. To further advance LIB technology, a fundamental understanding of the underlying chemical processes is required. In particular, the decomposition of electrolyte species and associated formation of the solid electrolyte interphase (SEI) is critical for LIB performance.

View Article and Find Full Text PDF

Density functional tight binding (DFTB) is an attractive method for accelerated quantum simulations of condensed matter due to its enhanced computational efficiency over standard density functional theory (DFT) approaches. However, DFTB models can be challenging to determine for individual systems of interest, especially for metallic and interfacial systems where different bonding arrangements can lead to significant changes in electronic states. In this regard, we have created a rapid-screening approach for determining systematically improvable DFTB interaction potentials that can yield transferable models for a variety of conditions.

View Article and Find Full Text PDF

A general problem when designing functional nanomaterials for energy storage is the lack of control over the stability and reactivity of metastable phases. Using the high-capacity hydrogen storage candidate LiAlH as an exemplar, we demonstrate an alternative approach to the thermodynamic stabilization of metastable metal hydrides by coordination to nitrogen binding sites within the nanopores of N-doped CMK-3 carbon (NCMK-3). The resulting LiAlH@NCMK-3 material releases H at temperatures as low as 126 °C with full decomposition below 240 °C, bypassing the usual LiAlH intermediate observed in bulk.

View Article and Find Full Text PDF

In this article, we present a systematic study on developing machine learning force fields (MLFFs) for crystalline silicon. While the main-stream approach of fitting a MLFF is to use a small and localized training set from molecular dynamics simulations, it is unlikely to cover the global features of the potential energy surface. To remedy this issue, we used randomly generated symmetrical crystal structures to train a more general Si-MLFF.

View Article and Find Full Text PDF

The lower limit of metal hydride nanoconfinement is demonstrated through the coordination of a molecular hydride species to binding sites inside the pores of a metal-organic framework (MOF). Magnesium borohydride, which has a high hydrogen capacity, is incorporated into the pores of UiO-67bpy (ZrO(OH)(bpydc) with bpydc = 2,2'-bipyridine-5,5'-dicarboxylate) by solvent impregnation. The MOF retained its long-range order, and transmission electron microscopy and elemental mapping confirmed the retention of the crystal morphology and revealed a homogeneous distribution of the hydride within the MOF host.

View Article and Find Full Text PDF

Ionic liquids (ILs) promise far greater electrochemical performance compared to aqueous systems, yet key physicochemical properties governing their assembly at interfaces within commonly used graphitic nanopores remain poorly understood. In this work, we combine synchrotron X-ray scattering with first-principles molecular dynamics simulations to unravel key structural characteristics of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([TFSI]) ionic liquids confined in carbon slit pores. X-ray scattering reveals selective pore filling due to size exclusion, while filled pores exhibit disruption in the IL intermolecular structure, the extent of which increases for narrower slit pores.

View Article and Find Full Text PDF

Engineering the electrolyte microenvironment represents an attractive route to tuning the selectivity of electrocatalytic reactions beyond catalyst composition and morphology. However, harnessing the full potential of this approach requires understanding the interplay between voltage, electrolyte composition, and adsorbate binding within the electrical double layer, which is absent from the usual theoretical approaches. In this work, we apply a recently developed density functional theory (DFT)-continuum approach based on the effective screening medium method and reference interaction site model (ESM-RISM) to explore electrolyte effects with an enhanced description of the electrochemical interface.

View Article and Find Full Text PDF

Magnesium borohydride (Mg(BH), abbreviated here MBH) has received tremendous attention as a promising onboard hydrogen storage medium due to its excellent gravimetric and volumetric hydrogen storage capacities. While the polymorphs of MBH-alpha (α), beta (β), and gamma (γ)-have distinct properties, their synthetic homogeneity can be difficult to control, mainly due to their structural complexity and similar thermodynamic properties. Here, we describe an effective approach for obtaining pure polymorphic phases of MBH nanomaterials within a reduced graphene oxide support (abbreviated MBHg) under mild conditions (60-190 °C under mild vacuum, 2 Torr), starting from two distinct samples initially dried under Ar and vacuum.

View Article and Find Full Text PDF