Background And Objectives: Neonatal brain injury is a common and devastating diagnosis conferring lifelong challenges for children and families. The role of mechanical forces applied to the head, often referred to as "birth trauma," are often considered although evidence for this association is lacking. The objective of this study was to investigate the association between common types of neonatal brain injury and scalp swelling using a novel method to quantify scalp swelling as an unbiased proxy for mechanical forces applied to the head.
View Article and Find Full Text PDFPerinatal stroke causes most hemiparetic cerebral palsy and cognitive dysfunction may co-occur. Compensatory developmental changes in the intact contralesional hemisphere may mediate residual function and represent targets for neuromodulation. We used morphometry to explore cortical thickness, grey matter volume, gyrification, and sulcal depth of the contralesional hemisphere in children, adolescents, and young adults after perinatal stroke and explored associations with motor, attention, and executive function.
View Article and Find Full Text PDFDevelopmental lateralization of brain function is imperative for behavioral specialization, yet few studies have investigated differences between hemispheres in structural connectivity patterns, especially over the course of development. The present study compares the lateralization of structural connectivity patterns, or topology, across children, adolescents, and young adults. We applied a graph theory approach to quantify key topological metrics in each hemisphere including efficiency of information transfer between regions (global efficiency), clustering of connections between regions (clustering coefficient [CC]), presence of hub-nodes (betweenness centrality [BC]), and connectivity between nodes of high and low complexity (hierarchical complexity [HC]) and investigated changes in these metrics during development.
View Article and Find Full Text PDFPerinatal stroke occurs early in life and often leads to a permanent, disabling weakness to one side of the body. To test the hypothesis that non-lesioned hemisphere sensorimotor network structural connectivity in children with perinatal stroke is different from controls, we used diffusion imaging and graph theory to explore structural topology between these populations. Children underwent diffusion and anatomical 3T MRI.
View Article and Find Full Text PDFPerinatal stroke affects ∼1 in 1000 births and concomitant cognitive impairments are common but poorly understood. Rates of Attention Deficit/Hyperactivity Disorder (ADHD) are increased 5-10× and executive dysfunction can be disabling. We used diffusion imaging to investigate whether stroke-related differences in frontal white matter (WM) relate to cognitive impairments.
View Article and Find Full Text PDFDevelopmental coordination disorder (DCD) is a neurodevelopmental disorder occurring in 5-6% of school-aged children. Converging evidence suggests that dysfunction within cortico-striatal and cortico-cerebellar networks may contribute to motor deficits in DCD, yet limited research has examined the brain morphology of these regions. Using T1-weighted magnetic resonance imaging the current study investigated cortical and subcortical volumes in 37 children with DCD, aged 8 to 12 years, and 48 controls of a similar age.
View Article and Find Full Text PDFMost cases of hemiparetic cerebral palsy are caused by perinatal stroke, resulting in lifelong disability for millions of people. However, our understanding of how the motor system develops following such early unilateral brain injury is increasing. Tools such as neuroimaging and brain stimulation are generating informed maps of the unique motor networks that emerge following perinatal stroke.
View Article and Find Full Text PDFThe current study represents the first comprehensive examination of spatial, temporal and sustained attention following cerebellar damage. Results indicated that, compared to controls, cerebellar damage resulted in a larger cueing effect at the longest SOA - possibly reflecting a slowed the onset of inhibition of return (IOR) during a reflexive covert attention task, and reduced the ability to detect successive targets during an attentional blink task. However, there was little evidence to support the notion that cerebellar damage disrupted voluntary covert attention or the sustained attention to response task (SART).
View Article and Find Full Text PDFDevelopmental neuroplasticity allows young brains to adapt via experiences early in life and also to compensate after injury. Why certain individuals are more adaptable remains underexplored. Perinatal stroke is an ideal human model of neuroplasticity with focal lesions acquired near birth in a healthy brain.
View Article and Find Full Text PDFDevelopmental coordination disorder (DCD) is a neurodevelopmental motor disorder occurring in 5-6% of school-aged children. It is suggested that children with DCD show deficits in motor learning. Transcranial direct current stimulation (tDCS) enhances motor learning in adults and children but is unstudied in DCD.
View Article and Find Full Text PDFObjective: To employ diffusion imaging connectome methods to explore network development in the contralesional hemisphere of children with perinatal stroke and its relationship to clinical function. We hypothesized alterations in global efficiency of the intact hemisphere would correlate with clinical disability.
Methods: Children with unilateral perinatal arterial (n = 26) or venous (n = 27) stroke and typically developing controls (n = 32) underwent 3T diffusion and T1 anatomical MRI and completed established motor assessments.
Perinatal stroke occurs around the time of birth and leads to lifelong neurological disabilities including hemiparetic cerebral palsy. Magnetic resonance imaging (MRI) has revolutionized our understanding of developmental neuroplasticity following early injury, quantifying volumetric, structural, functional, and metabolic compensatory changes after perinatal stroke. Such techniques can also be used to investigate how the brain responds to treatment (interventional neuroplasticity).
View Article and Find Full Text PDFBackground: Perinatal stroke causes most hemiparetic cerebral palsy and leads to lifelong disability. Understanding developmental neuroplasticity following early stroke is increasingly translated into novel therapies. Diaschisis refers to alterations brain structures remote from, but connected to, stroke lesions.
View Article and Find Full Text PDFBackground and Purpose- Perinatal stroke causes most hemiparetic cerebral palsy and lifelong disability. Crossed cerebellar atrophy (CCA) is chronic cerebellar volume loss following contralateral motor pathway injury. We hypothesized that CCA is quantifiable in perinatal stroke and associated with poor motor outcome.
View Article and Find Full Text PDF