Publications by authors named "Brandon R Barnett"

Porous organic cages (POCs) and metal-organic polyhedra (MOPs) function as zero-dimensional porous materials, able to mimic many functions of insoluble framework materials while offering processability advantages. A popular approach to access tailored metal-based motifs in extended network materials is postsynthetic metalation, which allows metal installation to be decoupled from framework assembly. Surprisingly, this approach has only sparingly been reported for molecular porous materials.

View Article and Find Full Text PDF

Perfluorocompound (PFC) gases play vital roles in microelectronics processing. Requirements for ultra-high purities traditionally necessitate use of virgin sources and thereby hinder the capture, purification, and reuse of these costly gases. Most importantly, gaseous PFCs are incredibly potent greenhouse gases with atmospheric lifetimes on the order of 10-10 years, and thus any environmental emissions have an outsized and prolonged impact on our climate.

View Article and Find Full Text PDF

The L-edge X-ray absorption spectra of late transition metals such as Cu, Ag, and Au exhibit absorption onsets lower in energy for higher oxidation states, which is at odds with the measured spectra of earlier transition metals. Time-dependent density functional theory calculations for Cu/Cu reveal a larger 2p core-exciton binding energy for Cu, overshadowing shifts in single-particle excitation energies with respect to Cu. We explore this phenomenon in a Cu metal-organic framework with ∼12% Cu defects and find that corrections with self-consistent excited-state total energy differences provide accurate XAS peak alignment.

View Article and Find Full Text PDF

Both natural enzymatic systems and synthetic porous material catalysts utilize well-defined and uniform channels to dictate reaction selectivities on the basis of size or shape. Mimicry of this design element in homogeneous systems is generally difficult owing to the flexibility inherent in most small molecular species. Herein, we report the synthesis of a tripodal ligand scaffold that orients a narrow and rigid cavity atop accessible metal coordination space.

View Article and Find Full Text PDF

Coordinatively unsaturated metal sites within certain zeolites and metal-organic frameworks can strongly adsorb a wide array of substrates. While many classical examples involve electron-poor metal cations that interact with adsorbates largely through physical interactions, unsaturated electron-rich metal centers housed within porous frameworks can often chemisorb guests amenable to redox activity or covalent bond formation. Despite the promise that materials bearing such sites hold in addressing myriad challenges in gas separations and storage, very few studies have directly interrogated mechanisms of chemisorption at open metal sites within porous frameworks.

View Article and Find Full Text PDF

Metal-organic frameworks are promising materials for applications such as gas capture, separation, and storage, due to their ability to selectively adsorb small molecules. The metal-organic framework Cu-MFU-4, which contains coordinatively unsaturated copper(i) centers, can engage in backbonding interactions with various small molecule guests, motivating the design of frameworks that engage in backbonding and other electronic interactions for highly efficient and selective adsorption. Here, we examine several gases expected to bind to the open copper(i) sites in Cu-MFU-4 different electronic interactions, including σ-donation, π-backbonding, and formal electron transfer.

View Article and Find Full Text PDF

Most C hydrocarbons are obtained as byproducts of ethylene production or oil refining, and complex and energy-intensive separation schemes are required for their isolation. Substantial industrial and academic effort has been expended to develop more cost-effective adsorbent- or membrane-based approaches to purify commodity chemicals such as 1,3-butadiene, isobutene, and 1-butene, but the very similar physical properties of these C hydrocarbons make this a challenging task. Here, we examine the adsorption behavior of 1-butene, -2-butene, and -2-butene in the metal-organic frameworks M(dobdc) (M = Mn, Fe, Co, Ni; dobdc = 2,5-dioxidobenzene-1,4-dicarboxylate) and M(-dobdc) (-dobdc = 4,6-dioxidobenzene-1,3-dicarboxylate), which all contain a high density of coordinatively unsaturated M sites.

View Article and Find Full Text PDF

While interest in cooperative reactivity of transition metals and Lewis acids is receiving significant attention, the scope of known reactions that directly exploit the polarized reverse-dative σ-bond of metal-borane complexes (i.e., M→BR ) remains limited.

View Article and Find Full Text PDF

Transition metal complexes that contain metal-to-ligand retrodative σ-bonds have become the subject of increasing studies over the last decade. Lewis acidic "Z-type ligands" can modulate the electronic structure of their resultant complexes in a manner distinct from 2e donor ligands, and can also engage in cooperative reactivity with a Lewis basic transition metal. In this Feature article, we summarize our work with transition metal isocyanide complexes of group 10 metals that have exploited metal-based σ-type Lewis basicity.

View Article and Find Full Text PDF

Given the prevalent role of α-helical motifs on protein surfaces in mediating protein-protein and protein-DNA interactions, there have been significant efforts to develop strategies to induce α-helicity in short, unstructured peptides to interrogate such interactions. Toward this goal, we have recently introduced hybrid metal coordination motifs (HCMs). HCMs combine a natural metal-binding amino acid side chain with a synthetic chelating group that are appropriately positioned in a peptide sequence to stabilize an α-helical conformation upon metal coordination.

View Article and Find Full Text PDF

Owing to their unique topologies and abilities to self-assemble into a variety of extended and aggregated structures, the binary platinum carbonyl clusters [Pt3 (CO)6 ]n (2-) ("Chini clusters") continue to draw significant interest. Herein, we report the isolation and structural characterization of the trinuclear electron-transfer series [Pt3 (μ-CO)3 (CNAr(Dipp2) )3 ](n-) (n=0, 1, 2), which represents a unique set of monomeric Pt3 clusters supported by π-acidic ligands. Spectroscopic, computational, and synthetic investigations demonstrate that the highest-occupied molecular orbitals of the mono- and dianionic clusters consist of a combined π*-framework of the CO and CNAr(Dipp2) ligands, with negligible Pt character.

View Article and Find Full Text PDF

Complexes bearing electron rich transition metal centers, especially those displaying coordinative unsaturation, are well-suited to form reverse-dative σ-interactions with Lewis acids. Herein we demonstrate the generality of zerovalent, group 10 -terphenyl isocyanide complexes to form reverse-dative σ-interactions to Tl(i) and Ag(i) centers. Structural and spectroscopic investigations of these metal-only Lewis pairs (MOLPs) has allowed insight into the electronic consequences of Lewis-acid ligation within the primary coordination sphere of a transition metal center.

View Article and Find Full Text PDF

The redox-noninnocence of metal-coordinated C-organo nitrosoarenes has been established on the basis of solid-state characterization techniques, but the solution-phase properties of this class of metal-coordinated radicals have been relatively underexplored. In this report, the solution-phase properties and dynamics of the bis-nitrosobenzene diradical complex trans-Pd(κ(1)-N-PhNO)2(CNAr(Dipp2))2 are presented. This complex, which is best described as containing singly reduced phenylnitroxide radical ligands, is shown to undergo facile nitrosobenzene dissociation in solution to form the metalloxaziridine Pd(η(2)-N,O-PhNO)(CNAr(Dipp2))2 and thus is not a persistent species in solution.

View Article and Find Full Text PDF

The activation of carbon dioxide, organonitriles, and terminal acetylenes by (boryl)iminomethanes derived from isocyanide 1,1-hydroboration is described. Also detailed is the generality of hydroboration of m-terphenylisocyanides with hydroboranes of differing Lewis acidities.

View Article and Find Full Text PDF

Reported here are the isolation, structural characterization, and decomposition kinetics of the four-coordinate pentachloroethyl nickel complex, NiCl(CCl2CCl3)(CNAr(Mes2))2 (Ar(Mes2) = 2,6-(2,4,6-Me3C6H2)2C6H3). This complex is a unique example of a kinetically persistent β-chloroalkyl in a system relevant to coordination-insertion polymerization of polar olefins. Kinetic analysis of NiCl(CCl2CCl3)(CNAr(Mes2))2 decomposition indicates that β-chloride (β-Cl) elimination proceeds by a unimolecular mechanism that does not require initial dissociation of a CNAr(Mes2) ligand.

View Article and Find Full Text PDF

The synthesis of a three-coordinate Pt-borane complex featuring a bidentate "LZ" (boryl)iminomethane (BIM) ligand is reported. Unlike other LZ-type borane ligands featuring a single-donor buttress, the small bite angle enforced by the BIM ligand is shown to promote a significant metal-borane reverse-dative σ-interaction akin to multiply strapped metalloboratranes. The steric accessibility of the reactive Pt → B bond fostered by the BIM ligand allows for a rich reactivity profile toward small molecules that exploit metal-borane cooperative effects.

View Article and Find Full Text PDF

Tetrakis-(4-sulfonatophenyl)porphyrin cobalt was identified as a highly-active reductive dechlorination catalyst for chlorinated ethylenes. Through batch reactor kinetic studies, degradation of chlorinated ethylenes proceeded in a step-wise fashion with the sequential replacement of Cl by H. For perchloroethylene (PCE) and trichloroethylene (TCE), the dechlorination products were quantified and the C₂ mass was accounted for.

View Article and Find Full Text PDF