Publications by authors named "Brandon Presley"

Rationale: Indazole carboxamide synthetic cannabinoids, a prevalent class of recreational drugs, are a major clinical, forensic and public health challenge. One such compound, 5F-ADB, has been implicated in fatalities worldwide. Understanding its metabolism and distribution facilitates the development of laboratory assays to substantiate its consumption.

View Article and Find Full Text PDF

FUB-AMB, an indazole carboxamide synthetic cannabinoid recreational drug, was one of the compounds most frequently reported to governmental agencies worldwide between 2016 and 2019. It has been implicated in intoxications and fatalities, posing a risk to public health. In the current study, FUB-AMB was incubated with human liver microsomes (HLM) to assess its metabolic fate and stability and to determine if its major ester hydrolysis metabolite (M1) was present in 12 authentic forensic human blood samples from driving under the influence of drug cases and postmortem investigations using UHPLC-MS/MS.

View Article and Find Full Text PDF

Studies of the metabolic and pharmacological profiles of indole carboxamide synthetic cannabinoids (a prevalent class of new psychoactive substances) are critical in ensuring that their use can be detected through bioanalytical testing. We have determined the in vitro Phase I metabolism of one such compound, PX-1 (5F-APP-PICA), and appropriate markers to demonstrate human consumption. PX-1 was incubated with human liver microsomes, followed by analysis of the extracts via high-resolution mass spectrometry.

View Article and Find Full Text PDF

Indazole carboxamide synthetic cannabinoids remain the most prevalent subclass of new psychoactive substances (NPS) reported internationally. However, the metabolic and pharmacological properties of many of these compounds remain unknown. Elucidating these characteristics allows members of the clinical and forensic communities to identify causative agents in patient samples, as well as render conclusions regarding their toxic effects.

View Article and Find Full Text PDF

Synthetic cannabinoids have proliferated over the last decade and have become a major public health and analytical challenge, critically impacting the clinical and forensic communities. Indazole carboxamide class synthetic cannabinoids have been particularly rampant, and exhibit severe toxic effects upon consumption due to their high binding affinity and potency at the cannabinoid receptors (CB and CB ). MDMB-CHMINACA, methyl 2-[1-(cyclohexylmethyl)-1H-indazole-3-carboxamido]-3,3-dimethylbutanoate, a compound of this chemical class, has been identified in forensic casework and is structurally related to several other synthetic cannabinoids.

View Article and Find Full Text PDF

Clandestine chemists have demonstrated an ability to convert commercially available pseudoephedrine formulations to methamphetamine. Some of these formulations have properties that manufacturers claim limit or block the extraction of pseudoephedrine and its direct conversion to methamphetamine. In this study, 3 commercially available pseudoephedrine formulations were evaluated for ease of extraction and conversion to methamphetamine using a common chemistry technique called the one-pot method that is frequently employed by clandestine chemists.

View Article and Find Full Text PDF