Background: DNA methylation (DNAm) data from human samples has been leveraged to develop "epigenetic clock" algorithms that predict age and other aging-related phenotypes. Some DNAm clocks were trained using DNAm obtained from blood cells, while other clocks were trained using data from diverse tissue/cell types. To assess how DNAm clocks perform across non-blood tissue types, we applied DNAm algorithms to DNAm data generated from 9 different human tissue types.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
December 2024
Background: African American (AA) men are at increased risk of prostate cancer (PCa) compared to men of European ancestry (EA). Biological mechanisms, including epigenetics, likely contribute to this disparity, but prior studies have been limited by sample size, candidate gene approaches, or lack of epigenome-wide DNA methylation (DNAm) data.
Methods: To improve our understanding of these mechanisms, we compared DNAm features distinguishing tumor and paired histologically benign tissue from 76 AA and 75 EA PCa patients.
Background: The vast majority of genes in the genome are multi-exonic, and are alternatively spliced during transcription, resulting in multiple isoforms for each gene. For some genes, different mRNA isoforms may have differential expression levels or be involved in different pathways. Bulk tissue RNA-seq, as a widely used technology for transcriptome quantification, measures the total expression (TE) levels of each gene across multiple isoforms in multiple cell types for each tissue sample.
View Article and Find Full Text PDFEpigenetics Chromatin
August 2024
Background: While the association of chronological age with DNA methylation (DNAm) in whole blood has been extensively studied, the tissue-specificity of age-related DNAm changes remains an active area of research. Studies investigating the association of age with DNAm in tissues such as brain, skin, immune cells, fat, and liver have identified tissue-specific and non-specific effects, thus, motivating additional studies of diverse human tissue and cell types.
Results: Here, we performed an epigenome-wide association study, leveraging DNAm data (Illumina EPIC array) from 961 tissue samples representing 9 tissue types (breast, lung, colon, ovary, prostate, skeletal muscle, testis, whole blood, and kidney) from the Genotype-Tissue Expression (GTEx) project.
Mendelian randomization (MR) provides valuable assessments of the causal effect of exposure on outcome, yet the application of conventional MR methods for mapping risk genes encounters new challenges. One of the issues is the limited availability of expression quantitative trait loci (eQTLs) as instrumental variables (IVs), hampering the estimation of sparse causal effects. Additionally, the often context- or tissue-specific eQTL effects challenge the MR assumption of consistent IV effects across eQTL and GWAS data.
View Article and Find Full Text PDFMendelian randomization (MR) provides valuable assessments of the causal effect of exposure on outcome, yet the application of conventional MR methods for mapping risk genes encounters new challenges. One of the issues is the limited availability of expression quantitative trait loci (eQTLs) as instrumental variables (IVs), hampering the estimation of sparse causal effects. Additionally, the often context/tissue-specific eQTL effects challenge the MR assumption of consistent IV effects across eQTL and GWAS data.
View Article and Find Full Text PDFGenetic effects on functionally related 'omic' traits often co-occur in relevant cellular contexts, such as tissues. Motivated by the multi-tissue methylation quantitative trait loci (mQTLs) and expression QTLs (eQTLs) analysis, we propose X-ING (Cross-INtegrative Genomics) for cross-omics and cross-context integrative analysis. X-ING takes as input multiple matrices of association statistics, each obtained from different omics data types across multiple cellular contexts.
View Article and Find Full Text PDFCigarette smoking adversely affects many aspects of human health, and epigenetic responses to smoking may reflect mechanisms that mediate or defend against these effects. Prior studies of smoking and DNA methylation (DNAm), typically measured in leukocytes, have identified numerous smoking-associated regions (e.g.
View Article and Find Full Text PDFBackground: American men of African ancestry (AA) have higher prostate cancer incidence and mortality rates compared with American men of European ancestry (EA). Differences in genetic susceptibility mechanisms may contribute to this disparity.
Methods: To gain insights into the regulatory mechanisms of prostate cancer susceptibility variants, we tested the association between SNPs and DNA methylation (DNAm) at nearby CpG sites across the genome in benign and cancer prostate tissue from 74 AA and 74 EA men.
Background: We used a polygenic score for externalizing behavior (extPGS) and structural MRI to examine potential pathways from genetic liability to conduct problems via the brain across the adolescent transition.
Methods: Three annual assessments of child conduct problems, attention-deficit/hyperactivity problems, and internalizing problems were conducted across across 9-13 years of age among 4,475 children of European ancestry in the Adolescent Brain Cognitive Development Study (ABCD Study®).
Results: The extPGS predicted conduct problems in each wave (R = 2.
Background: Folic acid (FA) is the oxidized form of folate found in supplements and FA-fortified foods. Most FA is reduced by dihydrofolate reductase to 5-methyltetrahydrofolate (5mTHF); the latter is the form of folate naturally found in foods. Ingestion of FA increases the plasma levels of both 5mTHF and unmetabolized FA (UMFA).
View Article and Find Full Text PDFWe conducted a multi-ancestry genome-wide association study of prostate-specific antigen (PSA) levels in 296,754 men (211,342 European ancestry; 58,236 African ancestry; 23,546 Hispanic/Latino; 3,630 Asian ancestry; 96.5% of participants were from the Million Veteran Program). We identified 318 independent genome-wide significant (p≤5e-8) variants, 184 of which were novel.
View Article and Find Full Text PDFBackground: There is growing consensus that researchers should offer to return genetic results to participants, but returning results in lower-resource countries has received little attention. In this study, we return results on genetic susceptibility to arsenic toxicity to participants in a Bangladeshi cohort exposed to arsenic through naturally-contaminated drinking water. We examine the impact on behavioral changes related to exposure reduction.
View Article and Find Full Text PDFPulmonary fibrosis (PF) is characterized by profound scarring and poor survival. We investigated the association of leukocyte telomere length (LTL) with chronological age and mortality across racially diverse PF cohorts. LTL measurements among participants with PF stratified by race/ethnicity were assessed in relation to age and all-cause mortality, and compared to controls.
View Article and Find Full Text PDFChronic exposure to arsenic (As) remains a global public health concern and our understanding of the biological mechanisms underlying the adverse effects of As exposure remains incomplete. Here, we used a high-resolution metabolomics approach to examine how As affects metabolic pathways in humans. We selected 60 non-smoking adults from the Folic Acid and Creatine Trial (FACT).
View Article and Find Full Text PDFInorganic arsenic (iAs) is a carcinogen, and chronic exposure is associated with adverse health outcomes, including cancer and cardiovascular disease. Consumed iAs can undergo two methylation reactions catalyzed by arsenic methyltransferase (), producing monomethylated and dimethylated forms of arsenic (MMA and DMA). Methylation of iAs helps facilitate excretion of arsenic in urine, with DMA composing the majority of arsenic species excreted.
View Article and Find Full Text PDFStudies of DNA methylation (DNAm) in solid human tissues are relatively scarce; tissue-specific characterization of DNAm is needed to understand its role in gene regulation and its relevance to complex traits. We generated array-based DNAm profiles for 987 human samples from the Genotype-Tissue Expression (GTEx) project, representing 9 tissue types and 424 subjects. We characterized methylome and transcriptome correlations (eQTMs), genetic regulation in cis (mQTLs and eQTLs) across tissues and e/mQTLs links to complex traits.
View Article and Find Full Text PDFBackground: Arsenic exposure increases the risk of several cancers in humans and contributes to genomic instability. Somatic loss of the Y chromosome (LoY) is a potential biomarker of genomic instability and cancer risk. Smoking is associated with LoY, but few other carcinogens have been investigated.
View Article and Find Full Text PDFA polygenic risk score (PRS) for attention-deficit/hyperactivity disorder (ADHD) has been found to be associated with ADHD in multiple studies, but also with many other dimensions of problems. Little is known, however, about the processes underlying these transdiagnostic associations. Using data from the baseline and 1-year follow-up assessments of 9- to 10-year-old children in the Adolescent Brain Cognitive Development™ (ABCD©) Study, associations were assessed between an ADHD PRS and both general and specific factors of psychological problems defined in bifactor modeling.
View Article and Find Full Text PDFA new approach helps to assess the impact of accelerated epigenetic aging on the risk of cancer.
View Article and Find Full Text PDFManual interpretation of variants remains rate limiting in precision oncology. The increasing scale and complexity of molecular data generated from comprehensive sequencing of cancer samples requires advanced interpretative platforms as precision oncology expands beyond individual patients to entire populations. To address this unmet need, we introduce a Platform for Oncogenomic Reporting and Interpretation (PORI), comprising an analytic framework that facilitates the interpretation and reporting of somatic variants in cancer.
View Article and Find Full Text PDFTrait-associated genetic variants affect complex phenotypes primarily via regulatory mechanisms on the transcriptome. To investigate the genetics of gene expression, we performed cis- and trans-expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium. We detected cis-eQTL for 88% of genes, and these were replicable in numerous tissues.
View Article and Find Full Text PDF