Phys Rev E Stat Nonlin Soft Matter Phys
November 2008
Prime numbers are the building blocks of our arithmetic; however, their distribution still poses fundamental questions. Riemann showed that the distribution of primes could be given explicitly if one knew the distribution of the nontrivial zeros of the Riemann zeta(s) function. According to the Hilbert-Pólya conjecture, there exists a Hermitian operator of which the eigenvalues coincide with the real parts of the nontrivial zeros of zeta(s) .
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2003
Using two distinct inversion techniques, the local one-dimensional potentials for the Riemann zeros and prime number sequence are reconstructed. We establish that both inversion techniques, when applied to the same set of levels, lead to the same fractal potential. This provides numerical evidence that the potential obtained by inversion of a set of energy levels is unique in one dimension.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2003
We present a numerical study of Riemann's formula for the oscillating part of the density of the primes and their integer powers. The formula consists of an infinite series of oscillatory terms, one for each zero of the zeta function on the critical line, and was derived by Riemann in his paper on primes, assuming the Riemann hypothesis. We show that high-resolution spectral lines can be generated by the truncated series at all integer powers of primes and demonstrate explicitly that the relative line intensities are correct.
View Article and Find Full Text PDF