Capillary assembly of liquid particles (CALP) is a microfabrication strategy for engineering arbitrarily shaped polymer colloids. The method entails depositing emulsion particles into patterned microarrays within a fluidic cell: coalescence, polymerization, and extraction of the deposited material engender faceted colloids. Herein, the versatility of CALP is demonstrated by using both consecutive assembly and heterogeneous coassembly to engineer geometrically diverse Janus and patchy colloids.
View Article and Find Full Text PDFCapillary assembly is a versatile method for depositing colloidal particles within templates, resulting in nano/microarrays and colloidal superstructures for optical, plasmonic, and sensory applications. Liquid particles (LPs), comprised of oligomerized 3-(trimethoxysilyl)propyl methacrylate, are herein shown to deposit into patterned cavities via capillary assembly. In contrast to solid colloids, LPs coalesce upon solvent evaporation and assume the geometry of the template.
View Article and Find Full Text PDF