Publications by authors named "Brandon M Johnston"

Cationic poly(amido amine) (PAMAM) dendrimers exhibit great potential for use in drug delivery, but their high charge density leads to an inherent cytotoxicity. To increase biocompatibility, many studies have attached poly(ethylene glycol) (PEG) chains to the dendrimer surface. It is unclear how these tethered PEG chains influence the physicochemical properties of the dendrimer.

View Article and Find Full Text PDF

Novel polymer amphiphiles with chemical structures designed as zwitterionic analogs of Pluronic block copolymers were prepared by controlled free radical polymerization of phosphorylcholine (PC) or choline phosphate (CP) methacrylate monomers from a difunctional poly(propylene oxide) (PPO) macroinitiator. Well-defined, water-dispersible zwitterionic triblock copolymers, or "zwitteronics", were prepared with PC content ranging from 5 to 47 mol percent and composition-independent surfactant characteristics in water, which deviate from the properties of conventional Pluronic amphiphiles. These PC-zwitteronics assembled into nanoparticles in water, with tunable sizes and critical aggregation concentrations (CACs) based on their hydrophilic-lipophilic balance (HLB).

View Article and Find Full Text PDF

Complex coacervation is a widely utilized technique for effecting phase separation, though predictive understanding of molecular-level details remains underdeveloped. Here, we couple coarse-grained Monte Carlo simulations with experimental efforts using a polypeptide-based model system to investigate how a comb-like architecture affects complex coacervation and coacervate stability. Specifically, the phase separation behavior of linear polycation-linear polyanion pairs was compared to that of comb polycation-linear polyanion and comb polycation-comb polyanion pairs.

View Article and Find Full Text PDF

Direct chemometric interpretation of raw chromatographic data (as opposed to integrated peak tables) has been shown to be advantageous in many circumstances. However, this approach presents two significant challenges: data alignment and feature selection. In order to interpret the data, the time axes must be precisely aligned so that the signal from each analyte is recorded at the same coordinates in the data matrix for each and every analyzed sample.

View Article and Find Full Text PDF