Designing new antimicrobial peptides (AMPs) focuses heavily on the activity of the peptide and less on the elements that stabilize the secondary structure of these peptides. Studies have shown that improving the structure of naturally occurring AMPs can affect activity and so here we explore the relationship between structure and activity of two non-naturally occurring AMPs. We have used a backbone-cyclized peptide as a template and designed an uncyclized analogue of this peptide that has antimicrobial activity.
View Article and Find Full Text PDFMolecular simulation has been used to model the detailed folding properties of peptides, yet prospective computational peptide design by such approaches remains challenging and nontrivial. To test the accuracy of simulation-based hairpin design, we characterized the folding properties of a series of so-called β-cap hairpin peptides designed to mimic a conserved hairpin of LapD, a bacterial intracellular signaling protein, both experimentally by NMR spectroscopy and computationally by implicit-solvent replica-exchange molecular dynamics using three different AMBER force fields (ff96, ff99sb-ildn, and ff99sb-ildn-NMR). A unique challenge presented by these designs is the presence of both a terminal Trp-Trp capping motif and a conserved GWxQ motif in the hairpin turn required for binding to LapG.
View Article and Find Full Text PDFMany naturally occurring antimicrobial peptides (AMPs) are amphipathic with a β-hairpin conformation stabilized by cross-strand disulfides across the associated β-strands. Here, we show that the disulfides are not essential. Other structuring means such as better β-turns and noncovalent cross-strand interactions can, with proper design, replace the disulfides with no loss in antimicrobial activity.
View Article and Find Full Text PDFProtein loops make up a large portion of the secondary structure in nature. But very little is known concerning loop closure dynamics and the effects of loop composition on fold stability. We have designed a small system with stable β-sheet structures, including features that allow us to probe these questions.
View Article and Find Full Text PDFWe have extended our studies of Trp/Trp to other Aryl/Aryl through-space interactions that stabilize hairpins and other small polypeptide folds. Herein we detail the NMR and CD spectroscopic features of these types of interactions. NMR data remains the best diagnostic for characterizing the common T-shape orientation.
View Article and Find Full Text PDFBuilding on our recent report of an active H production catalyst [Ni(P N)] (Prop = phenylpropionic acid, peptide (R10) = WIpPRWTGPR-NH, p = D-proline and PN = 1-aza-3,6-diphosphacycloheptane) that contains structured β-hairpin peptides, here we investigate how H production is effected by: (1) the length of the hairpin (eight or ten residues) and (2) limiting the flexibility between the peptide and the core complex by altering the length of the linker: phenylpropionic acid (three carbons) or benzoic acid (one carbon). Reduction of the peptide chain length from ten to eight residues increases or maintains the catalytic current for H production for all complexes, suggesting a non-productive steric interaction at longer peptide lengths. While the structure of the hairpin appears largely intact for the complexes, NMR data are consistent with differences in dynamic behavior which may contribute to the observed differences in catalytic activity.
View Article and Find Full Text PDFBeta sheets are inherently length-limited; adding residues to the ends of model β-sheets does not necessarily grow the β-sheet. Here, we present a method for extending β-sheets to any length with a stabilizing repeat unit containing cross-strand Trp residues. Beta ribbons as long as 35 residues (approaching 100 Å in length) are reported and characterized.
View Article and Find Full Text PDFProtein dynamics on the microsecond (μs) time scale were investigated by temperature-jump fluorescence spectroscopy as a function of temperature in two variants of a thermophilic alcohol dehydrogenase: W87F and W87F:H43A. Both mutants exhibit a fast, temperature-independent μs decrease in fluorescence followed by a slower full recovery of the initial fluorescence. The results, which rule out an ionizing histidine as the origin of the fluorescence quenching, are discussed in the context of a Trp49-containing dimer interface that acts as a conduit for thermally activated structural change within the protein interior.
View Article and Find Full Text PDFDisulfide bonds between cysteine residues are essential to the structure and folding of many proteins. Yet their role in the design of structured peptides and proteins has frequently been limited to use as intrachain covalent staples that reinforce existing structure or induce knot-like conformations. In β-hairpins, their placement at non-H-bonding positions across antiparallel strands has proven useful for achieving fully folded positive controls.
View Article and Find Full Text PDFUnderstanding protein beta structures has been hindered by the challenge of designing small, well-folded β-sheet systems. A β-capping motif was previously designed to help solve this problem, but not without limitations, as the termini of this β-cap were not fully available for chain extension. Combining Coulombic side chain attractions with a Trp/Trp edge-to-face interaction we produced a new capping motif that provided greater β-sheet stability.
View Article and Find Full Text PDFUsing alternate measures of fold stability for a wide variety of Trp-cage mutants has raised the possibility that prior dynamics T-jump measures may not be reporting on complete cage formation for some species. NMR relaxation studies using probes that only achieve large chemical shift difference from unfolded values on complete cage formation indicate slower folding in some but not all cases. Fourteen species have been examined, with cage formation time constants (1/kF) ranging from 0.
View Article and Find Full Text PDFAn extensive series of covalently linked small molecule-peptide adducts based on a terminally capped-beta hairpin motif is reported. The constructs can be prepared by standard solid-phase Fmoc chemistry with one to four peptide chains linked to small molecule hubs bearing carboxylic acid moieties. The key feature of interest is the precise, buried environment of the small molecule, and its rigid orientation relative to one or more short but fully structured peptide chain(s).
View Article and Find Full Text PDFCatalytic, peptide-containing metal complexes with a well-defined peptide structure have the potential to enhance molecular catalysts through an enzyme-like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide-based metal complex built upon the well-characterized hydrogen production catalyst [Ni(P(Ph)2N(Ph))2](2+) (P(Ph)2N(Ph)=1,3,6-triphenyl-1-aza-3,6-diphosphacycloheptane). The incorporated peptide maintains its β-hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide-based metal complex (≈100,000 s(-1)) is enhanced compared to the parent complex ([Ni(P(Ph)2N(APPA))2](2+); ≈50,500 s(-1)).
View Article and Find Full Text PDFThe Trp-cage, at 20 residues in length, is generally acknowledged as the smallest fully protein-like folding motif. Linking the termini by a two-residue unit and excising one residue affords circularly permuted sequences that adopt the same structure. This represents the first successful circular permutation of any fold of less than 50-residue length.
View Article and Find Full Text PDFA hyperstable Pin1 WW domain has been circularly permuted via excision of the fold-nucleating turn; it still folds to form the native three-strand sheet and hydrophobic core features. Multiprobe folding dynamics studies of the normal and circularly permuted sequences, as well as their constituent hairpin fragments and comparable-length β-strand-loop-β-strand models, indicate 2-state folding for all topologies. N-terminal hairpin formation is the fold nucleating event for the wild-type sequence; the slower folding circular permutant has a more distributed folding transition state.
View Article and Find Full Text PDFThe present studies have shown that (13)C=O, (13)C(α) and (13)C(β) of H-bonded strand residues in β-hairpins provide additional probes for quantitating the extent of folding in β-hairpins and other β-sheet models. Large differences in the structuring shifts (CSDs) of these (13)C sites in H-bonded versus non-H-bonded sites are observed: the differences between H-bonded and non-H-bonded sites are greater than 1.2 ppm for all three (13)C probes.
View Article and Find Full Text PDFThe quantum yield of tryptophan (Trp) fluorescence was measured in 30 designed miniproteins (17 β-hairpins and 13 Trp-cage peptides), each containing a single Trp residue. Measurements were made in D(2)O and H(2)O to distinguish between fluorescence quenching mechanisms involving electron and proton transfer in the hairpin peptides, and at two temperatures to check for effects of partial unfolding of the Trp-cage peptides. The extent of folding of all the peptides also was measured by NMR.
View Article and Find Full Text PDFThe (13)C chemical shifts measured for designed β-hairpins indicate that the structuring shifts (upfield for Cα and C', downfield for Cβ) previously reported as diagnostic for β-structuring in proteins appear only at the H-bonded strand residues. The resulting periodicity of structuring shift magnitudes is not, however, a consequence of H-bonding status; rather, it reflects a previously unrecognized alternation in the backbone torsion angles of β-strands. This feature of hairpins is also likely to be present in proteins.
View Article and Find Full Text PDFAlthough much has been learned about the design of models of beta-sheets during the last decade, modest fold stabilities in water and terminal fraying remain a feature of most beta-hairpin peptides. In the case of hairpin capping, nature did not provide guidance for solving the problem. Some observations from prior turn capping designs, with further optimization, have provided a generally applicable, "unnatural" beta cap motif (alkanoyl-Trp at the N terminus and Trp-Thr-Gly at the C terminus) that provides a net contribution of 6 + kJ/mol to beta-hairpin stability, surpassing all other interactions that stabilize beta-hairpins including the covalent disulfide bond.
View Article and Find Full Text PDFMutational optimization of two long-range interactions first observed in Ac-WINGKWT-NH2, (a) bifurcated H-bonding involving the threonine amide H(N) and side chain OH and the N-terminal acetyl carbonyl and (b) an H-bond between the entgegen-H(N) of the C-terminal amide and the indole ring of Trp6 that stabilizes a face-to-edge indole/indole interaction between Trp1 and Trp6, has afforded < or = 10 residue systems that yield a remarkably stable fold in water. Optimization was achieved by designing a hydrophobic cluster that sequesters these H-bonds from solvent exposure. The structures and extent of amide H/D exchange protection for CH3CH2CO-WI pGXWTGPS (p = D-Pro, X = Leu or Ile) were determined.
View Article and Find Full Text PDFBy combining a favorable turn sequence with a turn flanking Trp/Trp interaction and a C-terminal H-bonding interaction between a backbone amide and an i-2 Trp ring, a particularly stable (DeltaG(U) > 7 kJ/mol) truncated hairpin, Ac-WI-(D-Pro-D-Asn)-KWTG-NH(2), results. In this construct and others with a W-(4-residue turn)-W motif in severely truncated hairpins, the C-terminal Trp is the edge residue in a well-defined face-to-edge (FtE) aryl/aryl interaction. Longer hairpins and those with six-residue turns retain the reversed "edge-to-face" (EtF) Trp/Trp geometry first observed for the trpzip peptides.
View Article and Find Full Text PDF