A variety of crystalline alkali molybdate phases are characterized by (23)Na, (133)Cs, and (95)Mo magic-angle-spinning nuclear magnetic resonance (MAS NMR) to provide spectroscopic handles for studies of devitrification products in borosilicate nuclear waste glasses. The NMR parameters obtained from line-shape simulations are plotted as a function of various structural parameters to discern trends that may prove useful in the determination of unknown phases. These are applied to Cs3Na(MoO4)2, the most common precipitate found in cesium- and molybdenum-bearing model nuclear waste glasses, the crystal structure of which has not yet been determined, to provide structural constraints that may guide the refinement of powder X-ray diffraction data.
View Article and Find Full Text PDFNeutron diffraction at 11.4 and 295 K and solid-state (67)Zn NMR are used to determine both the local and the average structures in the disordered, negative thermal expansion (NTE) material, Zn(CN)2. Solid-state NMR not only confirms that there is head-to-tail disorder of the C≡N groups present in the solid, but yields information about the relative abundances of the different Zn(CN)4–n(NC)n tetrahedral species, which do not follow a simple binomial distribution.
View Article and Find Full Text PDFA series of sodium borosilicate glasses containing cesium, molybdenum, and chromium was prepared to investigate the partitioning of chromium amongst the glass and phase-separated crystalline molybdates. The precipitates were examined by (133)Cs, (23)Na, and (95)Mo MAS NMR, revealing a phase assemblage consisting of Na(2)MoO(4), Na(2)MoO(4)·2H(2)O, Cs(2)MoO(4), Cs(2)CrO(4), CsNaMoO(4)·2H(2)O, and Cs(3)Na(MoO(4))(2). (133)Cs MAS NMR indicates random substitution of Cr into the Mo sites of Cs(3)Na(MoO(4))(2) and provides a quantitative assessment of Cr incorporation.
View Article and Find Full Text PDFA series of lead(II) coordination polymers containing [N(CN)(2)](-) (DCA) or [Au(CN)(2)](-) bridging ligands and substituted terpyridine (terpy) ancillary ligands ([Pb(DCA)(2)] (1), [Pb(terpy)(DCA)(2)] (2), [Pb(terpy){Au(CN)(2)}(2)] (3), [Pb(4'-chloro-terpy){Au(CN)(2)}(2)] (4) and [Pb(4'-bromo-terpy)(μ-OH(2))(0.5){Au(CN)(2)}(2)] (5)) was spectroscopically examined by solid-state (207)Pb MAS NMR spectroscopy in order to characterise the structural and electronic changes associated with lead(II) lone-pair activity. Two new compounds, 2 and [Pb(4'-hydroxy-terpy){Au(CN)(2)}(2)] (6), were prepared and structurally characterised.
View Article and Find Full Text PDF