Molecular ions that are generated by chemical reactions with trapped atomic ions can serve as an accessible testbed for developing molecular quantum technologies. On the other hand, they are also a hindrance to scaling up quantum computers based on atomic ions, as unavoidable reactions with background gases destroy the information carriers. Here, we investigate the single- and two-photon dissociation processes of single CaOH+ molecular ions co-trapped in Ca+ ion crystals using a femtosecond laser system.
View Article and Find Full Text PDFTwo-photon excitation in the near-infrared (NIR) of colloidal nanocrystalline silicon quantum dots (nc-SiQDs) with photoluminescence also in the NIR has potential opportunities in the field of deep biological imaging. Spectra of the degenerate two-photon absorption (2PA) cross section of colloidal nc-SiQDs are measured using two-photon excitation over a spectral range 1.46 < < 1.
View Article and Find Full Text PDF