Publications by authors named "Brandon J Forys"

The built environments we move through are a filter for the stimuli we experience. If we are in a darker or a lighter room or space, a neutrally valenced sound could be perceived as more unpleasant or more pleasant. Past research suggests a role for the layout and lighting of a space in impacting how stimuli are rated, especially on bipolar valence scales.

View Article and Find Full Text PDF

We must often decide whether the effort required for a task is worth the reward. Past rodent work suggests that willingness to deploy cognitive effort can be driven by individual differences in perceived reward value, depression, or chronic stress. However, many factors driving cognitive effort deployment-such as short-term memory ability-cannot easily be captured in rodents.

View Article and Find Full Text PDF

While a delicious dessert being presented to us may elicit strong feelings of happiness and excitement, the same treat falling slowly away can lead to sadness and disappointment. Our emotional response to the item depends on its visual motion direction. Despite this importance, it remains unclear whether (and how) cortical areas devoted to decoding motion direction represents or integrates emotion with perceived motion direction.

View Article and Find Full Text PDF

We must often decide how much effort to exert or withhold to avoid undesirable outcomes or obtain rewards. In depression and anxiety, levels of avoidance can be excessive and reward-seeking may be reduced. Yet outstanding questions remain about the links between motivated action/inhibition and anxiety and depression levels, and whether they differ between men and women.

View Article and Find Full Text PDF

Understanding the basis of brain function requires knowledge of cortical operations over wide spatial scales and the quantitative analysis of brain activity in well-defined brain regions. Matching an anatomical atlas to brain functional data requires substantial labor and expertise. Here, we developed an automated machine learning-based registration and segmentation approach for quantitative analysis of mouse mesoscale cortical images.

View Article and Find Full Text PDF

Glucocorticoids (GCs) are secreted by the adrenal glands and locally produced by lymphoid organs. Adrenal GC secretion at baseline and in response to stressors is greatly reduced during the stress hyporesponsive period (SHRP) in neonatal mice (postnatal day (PND) 2-12). It is unknown whether lymphoid GC production increases in response to stressors during the SHRP.

View Article and Find Full Text PDF

Corticosterone is produced by the adrenal glands and also produced locally by other organs, such as the brain. Local levels of corticosterone in specific brain regions during development are not known. Here, we microdissected brain tissue and developed a novel liquid chromatography tandem mass spectrometry method (LC-MS/MS) to measure a panel of seven steroids (including 11-deoxycorticosterone (DOC), corticosterone, and 11-dehydrocorticosterone (DHC) in the blood, hippocampus (HPC), cerebral cortex (CC), and hypothalamus (HYP) of mice at postnatal day (PND) 5, 21, and 90.

View Article and Find Full Text PDF

Here, we describe a system capable of tracking specific mouse paw movements at high frame rates (70.17 Hz) with a high level of accuracy (mean=0.95, SD<0.

View Article and Find Full Text PDF