Cellular activity is spatially organized across different organelles. While several structures are well-characterized, many organelles have unknown roles. Profiling biomolecular composition is key to understanding function but is difficult to achieve in the context of small, dynamic structures.
View Article and Find Full Text PDFAlkylidene cyclopropanes (ACPs) are valuable synthetic intermediates because of their constrained structure and opportunities for further diversification. Although routes to ACPs are known, preparations of ACPs with control of both the configuration of the cyclopropyl ( vs ) group and the geometry of the alkene ( vs ) are unknown. We describe enzymatic cyclopropanation of allenes with ethyl diazoacetate (EDA) catalyzed by an iridium-containing cytochrome (Ir(Me)-CYP119) that controls both stereochemical elements.
View Article and Find Full Text PDFThe conversion of polyolefins to monomers would create a valuable carbon feedstock from the largest fraction of waste plastic. However, breakdown of the main chains in these polymers requires the cleavage of carbon-carbon bonds that tend to resist selective chemical transformations. Here, we report the production of propylene by partial dehydrogenation of polyethylene and tandem isomerizing ethenolysis of the desaturated chain.
View Article and Find Full Text PDFIn this Perspective, we present progress, outstanding challenges, and opportunities for the incorporation of artificial metalloenzymes (ArMs) into biosynthetic pathways. We first explain discoveries within the field of ArMs that led to the potential inclusion of these enzymes in biosynthesis. We then describe the specific barriers that our laboratory, in collaboration with the laboratories of Keasling and Mukhopadhyay, addressed to establish a biosynthetic pathway containing an ArM.
View Article and Find Full Text PDFArtificial metalloenzymes (ArMs), created by introducing synthetic cofactors into protein scaffolds, are an emerging class of catalyst for non-natural reactions. Although many classes of ArMs are known, in vitro reconstitution of cofactors and proteins has been a limiting step in the high-throughput screening and directed evolution of ArMs because purification of individual host proteins is time-consuming. We describe the application of a platform to combine mutants of the P450 enzyme CYP119 and the cofactor Ir(Me)MPIX in vivo, by coexpression of the CYP119 mutants with the heme transporter encoded by the hug operon, to the directed evolution of ArMs containing Ir(Me)MPIX in whole cells.
View Article and Find Full Text PDFSynthetic biology enables microbial hosts to produce complex molecules from organisms that are rare or difficult to cultivate, but the structures of these molecules are limited to those formed by reactions of natural enzymes. The integration of artificial metalloenzymes (ArMs) that catalyse unnatural reactions into metabolic networks could broaden the cache of molecules produced biosynthetically. Here we report an engineered microbial cell expressing a heterologous biosynthetic pathway, containing both natural enzymes and ArMs, that produces an unnatural product with high diastereoselectivity.
View Article and Find Full Text PDF