Alloying is a versatile tool for engineering the optical and electronic properties of materials. Here, we explore the use of CdTe and CdSe nanocrystals in developing sintered CdSe(x)Te(1-x) alloys as bandgap tunable, light-absorbing layers for solution-processed solar cells. Using a layer-by-layer approach, we incorporate such alloyed materials into single- and graded-composition device architectures.
View Article and Find Full Text PDFSolar cells made by high temperature and vacuum processes from inorganic semiconductors are at a perceived cost disadvantage when compared with solution-processed systems such as organic and dye-sensitized solar cells. We demonstrate that totally solution processable solar cells can be fabricated from inorganic nanocrystal inks in air at temperature as low as 300 °C. Focusing on a CdTe/ZnO thin-film system, we report solar cells that achieve power conversion efficiencies of 6.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
September 2008
Pathways for proton transfer in the histidylglycine cation are examined in the gas-phase environment with the goal of understanding the mechanism by which protons may become mobile in proteins with basic amino acid residues. An extensive search of the potential energy surface is performed using density functional theory (DFT) methods. After corrections for zero-point energy are included, it is found that all the lowest energy barriers for proton transfer between the N-terminus and the imidazole ring have heights of only a few kcal/mol, while those between the imidazole ring and the backbone amide oxygen have heights of approximately 15 kcal/mol when the proton is moving from the ring to the backbone and only a few kcal/mol when moving from the backbone to the imidazole ring.
View Article and Find Full Text PDF