Publications by authors named "Brandon Huang"

Objective: To evaluate the efficacy and safety of lurasidone compared with quetiapine for treatment of delirium in critically ill patients.

Design: Prospective, observational cohort study.

Setting: Single-center community teaching hospital.

View Article and Find Full Text PDF

Favoring the CO2 reduction reaction (CO2RR) over the hydrogen evolution reaction and controlling the selectivity towards multicarbon products are currently major scientific challenges in sustainable energy research. It is known that the morphology of the catalyst can modulate catalytic activity and selectivity, yet this remains a relatively underexplored area in electrochemical CO2 reduction. Here, we exploit the material tunability afforded by colloidal chemistry to establish unambiguous structure/property relations between Cu nanocrystals and their behavior as electrocatalysts for CO2 reduction.

View Article and Find Full Text PDF

To investigate the necessity of the canonical BMP pathway during osteoclast differentiation, we created osteoclasts with a conditional gene deletion for Smad1 and Smad5 (SMAD1/5), or Smad4 using adenovirus expressing CRE recombinase (Ad-CRE). Reduction of either Smad4 or Smad1/5 expression resulted in fewer and smaller multinuclear cells compared to control cells. We also detected changes in osteoclast enriched genes, demonstrated by decreased Dc-stamp and cathepsin K expression in both Smad4 and Smad1/5 Ad-CRE osteoclasts, and changes in c-fos and Nfatc1 expression in only Smad4 Ad-CRE cells.

View Article and Find Full Text PDF

The mammalian target of rapamycin complex 1 (mTORC1) links the control of mRNA translation, cell growth, and metabolism to diverse stimuli. Inappropriate activation of mTORC1 can lead to cancer. Phorbol esters are naturally occurring products that act as potent tumor promoters.

View Article and Find Full Text PDF

Activation of the mammalian target of rapamycin complex 1 (mTORC1) causes the dissociation of eukaryotic initiation factor 4E complex (eIF4E)-binding protein 1 (4E-BP1) from eIF4E, leading to increased eIF4F complex formation. mTORC1 positively regulates protein synthesis and is implicated in several diseases including cardiac hypertrophy, a potentially fatal disorder involving increased cardiomyocyte size. The importance of 4E-BP1 in mTORC1-regulated protein synthesis was investigated by overexpressing 4E-BP1, which blocks eIF4F formation in isolated primary cardiomyocytes without affecting other targets for mTORC1 signaling.

View Article and Find Full Text PDF

The mammalian target of rapamycin complex 1 (mTORC1), a key regulator of protein synthesis, growth and proliferation in mammalian cells, is implicated in the development of cardiac hypertrophy. Ras homolog enriched in brain (Rheb) positively regulates mTORC1. We have studied whether Rheb is sufficient to activate mTOR signaling and promote protein synthesis and cardiac hypertrophy in adult rat ventricular cardiomyocytes (ARVC).

View Article and Find Full Text PDF