Background: Many studies of animal movement have focused on directed versus area-restricted movement, which rely on correlations between step-length and turn-angles and on stationarity through time to define behavioral states. Although these approaches might apply well to grazing in patchy landscapes, species that either feed for short periods on large, concentrated food sources or cache food exhibit movements that are difficult to model using the traditional metrics of turn-angle and step-length alone.
Results: We used GPS telemetry collected from a prey-caching predator, the cougar (), to test whether combining metrics of site recursion, spatiotemporal clustering, speed, and turning into an index of movement using partial sums, improves the ability to identify caching behavior.
Landscape genetic studies based on neutral genetic markers have contributed to our understanding of the influence of landscape composition and configuration on gene flow and genetic variation. However, the potential for species to adapt to changing landscapes will depend on how natural selection influences adaptive genetic variation. We demonstrate how landscape resistance models can be combined with genetic simulations incorporating natural selection to explore how the spread of adaptive variation is affected by landscape characteristics, using desert bighorn sheep (Ovis canadensis nelsoni) in three differing regions of the southwestern United States as an example.
View Article and Find Full Text PDF