Autism Spectrum Disorders (ASD) are a set of neurodevelopmental disorders with complex biology. The identification of ASD risk genes from exome-wide association studies and de novo variation analyses has enabled mechanistic investigations into how ASD-risk genes alter development. Most functional genomics studies have focused on the role of these genes in neurons and neural progenitor cells.
View Article and Find Full Text PDFJugular foramen syndrome (JFS) is a lower cranial neuropathy syndrome characterized by dysphonia and dysphagia. The syndrome is caused by dysfunction of the glossopharyngeal, vagus, and spinal accessory nerves at the level of the pars nervosa and pars vascularis within the jugular foramen. There are numerous etiologies for JFS, including malignancy, trauma, vascular, and infection.
View Article and Find Full Text PDFNeurohospitalist
January 2022
Acute necrotizing encephalopathy (ANE) is a rare and life-threatening disease. It is caused by a cytokine-mediated injury to the brain with characteristic hemorrhagic and edematous lesions involving the bilateral thalami, brainstem, and other subcortical structures. The disease is commonly associated with antecedent viral triggers such as influenza, parainfluenza, and more recently, SARS-CoV-2, with subsequent neurologic deterioration occurring within days to weeks.
View Article and Find Full Text PDFBackground: Isolated spinal artery aneurysms are extremely rare, and their pathogenesis, clinical presentation, and treatment strategies are poorly established. We report only the second case of a patient with an isolated posterior spinal aneurysm and concurrent left thalamic infarct and review the literature to help clarify treatment strategies of isolated spinal aneurysms.
Case Presentation: A 49-year-old patient presented with acute onset walking difficulty followed by diaphoresis, back and abdominal pain, and paraplegia.
Radioactive iodine (RAI) therapy with I is the standard of care for treatment in many patients with differentiated thyroid cancer. Because I is typically administered as a pill, and much of its radioactivity is excreted via the urine, there can be challenges in patients who cannot swallow pills, absorb iodine via the gastrointestinal tract, or eliminate RAI via the urine (i.e.
View Article and Find Full Text PDFSubacute sclerosing panencephalitis (SSPE) is a rare progressive neuroinfectious disease due to a late complication of the measles virus. The hallmark clinical features of this disease include behavioral changes, myoclonus, dementia, visual disturbances, and pyramidal and extrapyramidal signs. The presence of characteristic high-amplitude periodic complexes on electroencephalography and raised antibody titers against measles in the cerebrospinal fluid help solidify the diagnosis.
View Article and Find Full Text PDFTau aggregation underlies neurodegeneration in Alzheimer's disease and related tauopathies. We and others have proposed that transcellular propagation of pathology is mediated by Tau prions, which are ordered protein assemblies that faithfully replicate and cause specific biological effects. The prion model predicts the release of aggregates from a first-order cell and subsequent uptake into a second-order cell.
View Article and Find Full Text PDFParkinson's disease (PD) and multiple system atrophy (MSA) are distinct clinical syndromes characterized by the pathological accumulation of α-synuclein (α-syn) protein fibrils in neurons and glial cells. These disorders and other neurodegenerative diseases may progress via prion-like mechanisms. The prion model of propagation predicts the existence of "strains" that link pathological aggregate structure and neuropathology.
View Article and Find Full Text PDFTranscellular propagation of protein aggregate "seeds" has been proposed to mediate the progression of neurodegenerative diseases in tauopathies and α-synucleinopathies. We previously reported that tau and α-synuclein aggregates bind heparan sulfate proteoglycans (HSPGs) on the cell surface, promoting cellular uptake and intracellular seeding. However, the specificity and binding mode of these protein aggregates to HSPGs remain unknown.
View Article and Find Full Text PDFVertebrobasilar dolichoectasia (VBD) is characterized by significant dilation, elongation, and tortuosity of the vertebrobasilar system. We present a unique case of VBD, confirmed by neuroimaging studies, showing vascular compression of the right optic tract and lower cranial nerves leading to an incongruous left homonymous inferior quadrantanopia and glossopharyngeal neuralgia.
View Article and Find Full Text PDFAccumulation of hyperphosphorylated tau directly correlates with cognitive decline in Alzheimer's disease and other primary tauopathies. One therapeutic strategy may be to reduce total tau expression. We identified antisense oligonucleotides (ASOs) that selectively decreased human tau mRNA and protein in mice expressing mutant P301S human tau.
View Article and Find Full Text PDFIt is now established that numerous amyloid proteins associated with neurodegenerative diseases, including tau and α-synuclein, have essential characteristics of prions, including the ability to create transmissible cellular pathology in vivo. We have developed cellular bioassays that report on the various features of prion activity using genetic engineering and quantitative fluorescence-based detection systems. We have exploited these biosensors to measure the binding and uptake of tau seeds into cells in culture and to quantify seeding activity in brain samples.
View Article and Find Full Text PDFPrions derived from the prion protein (PrP) were first characterized as infectious agents that transmit pathology between individuals. However, the majority of cases of neurodegeneration caused by PrP prions occur sporadically. Proteins that self-assemble as cross-beta sheet amyloids are a defining pathological feature of infectious prion disorders and all major age-associated neurodegenerative diseases.
View Article and Find Full Text PDFBackground: Substantial evidence suggests that amyloid-β (Aβ) species induce oxidative stress and cerebrovascular (CV) dysfunction in Alzheimer's disease (AD), potentially contributing to the progressive dementia of this disease. The upstream molecular pathways governing this process, however, are poorly understood. In this report, we examine the role of heparan sulfate proteoglycans (HSPG) in Aβ-induced vascular smooth muscle cell (VSMC) dysfunction in vitro.
View Article and Find Full Text PDFIncreasing evidence supports transcellular propagation of toxic protein aggregates, or proteopathic seeds, as a mechanism for the initiation and progression of pathology in several neurodegenerative diseases, including Alzheimer's disease and the related tauopathies. The potentially critical role of tau seeds in disease progression strongly supports the need for a sensitive assay that readily detects seeding activity in biological samples. By combining the specificity of fluorescence resonance energy transfer (FRET), the sensitivity of flow cytometry, and the stability of a monoclonal cell line, an ultra-sensitive seeding assay has been engineered and is compatible with seed detection from recombinant or biological samples, including human and mouse brain homogenates.
View Article and Find Full Text PDFTau amyloid assemblies propagate aggregation from the outside to the inside of a cell, which may mediate progression of the tauopathies. The critical size of Tau assemblies, or "seeds," responsible for this activity is currently unknown, but this could be important for the design of effective therapies. We studied recombinant Tau repeat domain (RD) and Tau assemblies purified from Alzheimer disease (AD) brain composed largely of full-length Tau.
View Article and Find Full Text PDFTranscellular propagation of protein aggregates, or proteopathic seeds, may drive the progression of neurodegenerative diseases in a prion-like manner. In tauopathies such as Alzheimer's disease, this model predicts that tau seeds propagate pathology through the brain via cell-cell transfer in neural networks. The critical role of tau seeding activity is untested, however.
View Article and Find Full Text PDFWork over the past 4 years indicates that multiple proteins associated with neurodegenerative diseases, especially Tau and α-synuclein, can propagate aggregates between cells in a prion-like manner. This means that once an aggregate is formed it can escape the cell of origin, contact a connected cell, enter the cell, and induce further aggregation via templated conformational change. The prion model predicts a key role for extracellular protein aggregates in mediating progression of disease.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2013
Recent experimental evidence suggests that transcellular propagation of fibrillar protein aggregates drives the progression of neurodegenerative diseases in a prion-like manner. This phenomenon is now well described in cell and animal models and involves the release of protein aggregates into the extracellular space. Free aggregates then enter neighboring cells to seed further fibrillization.
View Article and Find Full Text PDFHuntington disease is a dominantly inherited neurodegenerative condition caused by polyglutamine expansion in the N terminus of the huntingtin protein (Htt). The first 17 amino acids (N17) of Htt play a key role in regulating its toxicity and aggregation. Both nuclear export and cytoplasm retention functions have been ascribed to N17.
View Article and Find Full Text PDF