Building Clinical Decision Support Systems, whether from regression models or machine learning requires clinical data either in standard terminology or as text for Natural Language Processing (NLP). Unfortunately, many clinical notes are written quickly during the consultation and contain many abbreviations, typographical errors, and a lack of grammar and punctuation Processing these highly unstructured clinical notes is an open challenge for NLP that we address in this paper. We present RECAP-KG - a knowledge graph construction frame workfrom primary care clinical notes.
View Article and Find Full Text PDF