Publications by authors named "Brandon E McNellis"

Article Synopsis
  • Tree mortality in tropical regions is accelerating, which could significantly impact the global carbon budget and efforts to limit warming to below 2°C.
  • A study spanning 49 years in Australian moist tropics shows that tree mortality risk has doubled over the last 35 years, indicating trees are living shorter lives and storing less carbon.
  • Environmental factors like increased atmospheric water stress, linked to global warming, may be driving this mortality, with certain tree species more vulnerable based on their water stress thresholds.
View Article and Find Full Text PDF

A better understanding of how climate affects growth in tree species is essential for improved predictions of forest dynamics under climate change. Long-term climate averages (mean climate) drive spatial variations in species' baseline growth rates, whereas deviations from these averages over time (anomalies) can create growth variation around the local baseline. However, the rarity of long-term tree census data spanning climatic gradients has so far limited our understanding of their respective role, especially in tropical systems.

View Article and Find Full Text PDF

Premise: Flexible phenological responses of invasive plants under climate change may increase their ability to establish and persist. A key aspect of plant phenology is the timing of root production, how it coincides with canopy development and subsequent water-use. The timing of these events within species and across communities could influence the invasion process.

View Article and Find Full Text PDF