Publications by authors named "Brandon C Moore"

The broad snouted caiman is a crocodylian native to South America that is subject to extensive conservation management in both wild and farming environments. Although reproductive behaviors like egg laying and clutch care have been examined in this species, little else is known about their copulatory system. We examined the anatomy of male and female cloacal and genital tissues ex vivo to build hypotheses of their interactions during copulation and the effects of that interaction on insemination.

View Article and Find Full Text PDF

The phallic glans of the American alligator (Alligator mississippiensis) is the distal termination of the semen-conducting sulcus spermaticus and during copulation has the closest, most intimate mechanical interactions with the female urodeum, the middle cloacal chamber that contains the opening to the vaginal passages and oviducts. However, the details of this interface leading to insemination and gamete uptake are unclear. Here, we: (1) histologically characterize the underlying tissue types and morphologically quantify the shape changes associated with glans inflation into the copulatory conformation, (2) digitally reconstruct from MRI the 3D shape of functional tissue compartments, and (3) diffusible iodine-based contrast-enhanced computed tomography image the copulatory fit between male phallus and female cloaca.

View Article and Find Full Text PDF

Botswana's Okavango Delta is a World Heritage Site and biodiverse wilderness. In 2016-2018, following arrival of the annual flood of rainwater from Angola's highlands, and using continuous oxygen logging, we documented profound aquatic hypoxia that persisted for 3.5 to 5 months in the river channel.

View Article and Find Full Text PDF

The crocodylian phallic glans is the distal inflatable structure that makes the most direct contact with the female cloacal and associated reproductive tract openings during copulation. Therefore, its form and function directly impact female tissue sensory interactions and insemination mechanics. Compared to mammals, less is known about glans functional anatomy among other amniotes, including crocodylians.

View Article and Find Full Text PDF

As wild population threats for the endangered false gharial (Tomistoma schlegelii) persist, conservation breeding programs, including developing semen collection techniques for subsequent artificial insemination, are becoming important species conservation measures. Developing reproductive biology understanding of a species is important to developing best practices and hopefully maximizing reproductive successes. However, information on crocodylians functional copulatory anatomy in general is lacking.

View Article and Find Full Text PDF

While puberty is an animal commonality, little is known of its timing or process in crocodylians. Males copulate with an intromittent phallus that has a distinct glans morphology which directly interacts with the female cloaca, putatively effecting effective semen transfer and ultimately increased fecundity. Here we present, during the Morelet's crocodile lifecycle, a well-defined body length (65 cm snout-vent length) inflection point that marks a subsequent increase of phallic glans growth rates.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that initiates a transcriptional pathway responsible for the expression of CYP1A subfamily members, key to the metabolism of xenobiotic compounds. Toxic planar halogenated aromatic hydrocarbons, including dioxin and PCBs, are capable of activating the AHR, and while dioxin and PCB inputs into the environment have been dramatically curbed following strict regulatory efforts in the United States, they persist in the environment and exposures remain relevant today. Little is known regarding the effects that long-term chronic exposures to dioxin or dioxin-like compounds might have on the development and subsequent health of offspring from exposed individuals, nor is much known regarding AHR expression in reptilians.

View Article and Find Full Text PDF

Intromittent organs are structures that enter the female genital tract and deposit sperm; these organs are found in many animal taxa that use internal fertilization. Despite their shared function, they are fantastically diverse morphologically. Many of their species-specific shape differences are likely the result of sexual selection and coevolution between male and female reproductive tracts, but a growing number of studies have identified other factors that can also affect their functional anatomy.

View Article and Find Full Text PDF

The distal part of the crocodilian phallus consists of a bulbous glans containing well-developed vascular tissues that can inflate before or during sexual activity, enlarging and elaborating the glans into a complex, though still functionally undefined, copulatory structure. An enlarged glans putatively interacts with the female cloaca and may change the shape of her reproductive tract to facilitate insemination and increase the probability of fertilization. Here, we investigated the cellular-level properties of the glans and other inflatable phallic tissues associated with the sperm-conducting sulcus spermaticus in the American alligator (Alligator mississippiensis).

View Article and Find Full Text PDF

As temperature-dependent sex determination (TSD) and homozygote or heterozygote genetic sex determination (GSD) exist in multiple reptilian taxa, they represent sex determination systems that have emerged de novo. Current investigations have revealed that the genetic mechanisms used by various reptilian species are similar to those used by other vertebrates. However, the recent completion or near completion of various reptilian genome projects suggests that new studies examining related species with and without TSD could begin to provide additional insight into the evolution of TSD and GSD in vertebrate ancestors.

View Article and Find Full Text PDF

Phalli of male crocodilians transfer sperm to female cloaca during sexual intercourse, resulting in internal fertilization. For over a century there have been scientific descriptions of crocodilian phallus morphologies; however, little work has presented detailed cellular-level analyses of these structures. Here we present a histological investigation of the complex functional anatomy of the juvenile male American alligator phallus, including fibrous and vascular erectile structures, a variety of secretory epithelium morphologies, and observed immune cells.

View Article and Find Full Text PDF

Oviducts respond to hormonal cues from ovaries with tissue proliferation and differentiation in preparation of transporting and fostering gametes. These responses produce oviducal microenvironments conducive to reproductive success. Here, we investigated changes in circulating plasma sex steroid hormones concentrations and ovarian and oviducal mRNA expression to an in vivo gonadotropin (FSH) challenge in sexually immature, five-month-old alligators.

View Article and Find Full Text PDF

Developing organisms interpret and integrate environmental signals to produce adaptive phenotypes that are prospectively suited for probable demands in later life. This plasticity can be disrupted when embryos are impacted by exogenous contaminants, such as environmental pollutants, producing potentially deleterious and long-lasting mismatches between phenotype and the future environment. We investigated the ability for in ovo environmental contaminant exposure to alter the growth trajectory and ovarian function of alligators at five months after hatching.

View Article and Find Full Text PDF

Environmental contaminant exposure can influence gonadal steroid signaling milieus; however, little research has investigated the vulnerability of non-steroidal signaling pathways in the gonads. Here we use American alligators (Alligator mississippiensis) hatched from field-collected eggs to analyze gonadal mRNA transcript levels of the activin-inhibin-follistatin gene expression network and growth differentiation factor 9. The eggs were collected from Lake Woodruff National Wildlife Refuge, a site with minimal anthropogenic influence, and Lake Apopka, a highly contaminated lake adjacent to a former EPA Superfund site.

View Article and Find Full Text PDF

Transforming growth factor-beta (TGFbeta) homologues form a diverse superfamily that arose early in animal evolution and control cellular function through membrane-spanning, conserved serine-threonine kinases (RII and RI receptors). Activin and inhibin are related dimers within the TGFbeta superfamily that share a common beta-subunit. The evolution of the inhibin alpha-subunit created the only antagonist within the TGFbeta superfamily and the only member known to act as an endocrine hormone.

View Article and Find Full Text PDF

Activins and estrogens participate in regulating the breakdown of ovarian germ cell nests and follicle assembly in mammals. In 1994, our group reported elevated frequencies of abnormal, multioocytic ovarian follicles in 6 month old, environmental contaminant-exposed female alligators after gonadotropin challenge. Here, we investigated if maternal contribution of endocrine disrupting contaminants to the egg subsequently alters estrogen/inhibin/activin signaling in hatchling female offspring, putatively predisposing an increased frequency of multioocytic follicle formation.

View Article and Find Full Text PDF

We investigated ovary and testis development of Alligator mississippiensis during the first 5 months posthatch. To better describe follicle assembly and seminiferous cord development, we used histochemical techniques to detect carbohydrate-rich extracellular matrix components in 1-week, 1-month, 3-month, and 5-month-old gonads. We found profound morphological changes in both ovary and testis.

View Article and Find Full Text PDF

Gonadal steroid hormone receptors play a vital role in transforming ligand signals into gene expression. We have shown previously that gonads from wild-caught juvenile alligators express greater levels of estrogen receptor 1 (ESR1) than estrogen receptor 2 (ESR2). Furthermore, sexually dimorphic ESR2 mRNA expression (female > male) observed in animals from the reference site (Lake Woodruff, FL, USA) was lost in alligators from the contaminated Lake Apopka (FL, USA).

View Article and Find Full Text PDF

Here we present a detailed morphological description of the alligator (Alligator mississippiensis) kidney and nephron. We present a series of histological, histochemical, and immunohistochemical markers that clearly define the seven regions of the alligator nephron. The alligator kidney is composed of many paired (mirrored) lobules on each kidney (lobe).

View Article and Find Full Text PDF

A previous study from our laboratory examining development in neonatal alligators from polluted Lake Apopka, Florida, found numerous differences relative to neonates from a reference site, Lake Woodruff National Wildlife Refuge. We postulated that the differences were the result of organizational changes derived from embryonic exposure to environmental contaminants and are related to the poor reproductive success reported in alligators from Lake Apopka. In this study we examine differences in alligators collected as eggs from these two populations and raised under similar conditions for 1 yr.

View Article and Find Full Text PDF

Steroids are essential for successful reproduction in all vertebrate species. Over the last several decades, extensive research has indicated that exposure to various environmental pollutants can disrupt steroidogenesis and steroid signaling. Although steroidogenesis is regulated by the hypothalamic-pituitary axis, it is also modified by various paracrine and autocrine factors.

View Article and Find Full Text PDF

American alligator (Alligator mississippiensis) ovary development is incomplete at hatching. During the months following hatching, the cortical processes of oogenesis started in ovo continues and folliculogenesis is initiated. Additionally, the medullary region of the gonad undergoes dramatic restructuring.

View Article and Find Full Text PDF

Stress responses to numerous environmental conditions have been studied in a wide range of fish species. Defining the relationship between stress and endocrine function is particularly critical to long-lived species such as sturgeons, whose economic viability relies heavily on proper endocrine function for the production of caviar. In this study, we examined the induced stress response, defined by plasma cortisol and glucose concentrations, and its relationship to plasma 17beta-estradiol, testosterone and 11-ketotestosterone concentrations in cultured female Siberian sturgeon (Acipenser baeri).

View Article and Find Full Text PDF

The overall contribution of environmental exposures to infertility is unknown, but a growing scientific database suggests that exposure to various environmental factors, both in utero and neonatally, could dramatically affect adult fertility. Studies of various contaminant-exposed wildlife populations suggest that multiple mechanisms contribute to changes in gonadal development, maturation of germ cells, fertilization, and pregnancy; specifically, the endocrine processes supporting these events. Although great debate and extensive research has occurred during the last decade surrounding fertility, fecundity, and semen quality, much less work has focused on environmental alterations in oocyte development and maturation.

View Article and Find Full Text PDF