Publications by authors named "Brandon C Knott"

Article Synopsis
  • Polyethylene terephthalate (PET) can be broken down by the PETase enzyme from Ideonella sakaiensis, with a proposed reaction pathway involving a two-step mechanism using a catalytic triad of serine, histidine, and aspartate.
  • Researchers applied transition path sampling and likelihood maximization to identify key reaction coordinates in the PETase catalytic process, predicting that deacylation is the slowest step and involving processes like nucleophilic attack and ester bond cleavage.
  • The study highlights the role of Trp185's flexibility in enhancing the reaction speed and offers insights for engineering enzymes that can more effectively convert plastics through bioconversion.
View Article and Find Full Text PDF

Protein engineering and screening of processive fungal cellobiohydrolases (CBHs) remain challenging due to limited expression hosts, synergy-dependency, and recalcitrant substrates. In particular, glycoside hydrolase family 7 (GH7) CBHs are critically important for the bioeconomy and typically difficult to engineer. Here, we target the discovery of highly active natural GH7 CBHs and engineering of variants with improved activity.

View Article and Find Full Text PDF

Biological funneling of lignin-derived aromatic compounds is a promising approach for valorizing its catalytic depolymerization products. Industrial processes for aromatic bioconversion will require efficient enzymes for key reactions, including demethylation of -methoxy-aryl groups, an essential and often rate-limiting step. The recently characterized GcoAB cytochrome P450 system comprises a coupled monoxygenase (GcoA) and reductase (GcoB) that catalyzes oxidative demethylation of the methoxy-aryl group in guaiacol.

View Article and Find Full Text PDF

Serine hydrolases cleave peptide and ester bonds and are ubiquitous in nature, with applications in biotechnology, in materials, and as drug targets. The serine hydrolase two-step mechanism employs a serine-histidine-aspartate/glutamate catalytic triad, where the histidine residue acts as a base to activate poor nucleophiles (a serine residue or a water molecule) and as an acid to allow the dissociation of poor leaving groups. This mechanism has been the subject of debate regarding how histidine shuttles the proton from the nucleophile to the leaving group.

View Article and Find Full Text PDF
Article Synopsis
  • Plastics pollution is a major global environmental issue, prompting microbes to evolve ways to break down synthetic polymers like polyethylene terephthalate (PET).
  • Two specific enzymes, PETase and MHETase, work together to decompose PET into its basic components, with recent research detailing the structure and function of MHETase.
  • Findings suggest that the functioning of MHETase and its interaction with PETase enhance the efficiency of converting PET into useful monomers, paving the way for future innovations in biodegradation and recycling of plastics.
View Article and Find Full Text PDF

Family 45 glycoside hydrolases (GH45) are endoglucanases that are integral to cellulolytic secretomes, and their ability to break down cellulose has been successfully exploited in textile and detergent industries. In addition to their industrial relevance, understanding the molecular mechanism of GH45-catalyzed hydrolysis is of fundamental importance because of their structural similarity to cell wall-modifying enzymes such as bacterial lytic transglycosylases (LTs) and expansins present in bacteria, plants, and fungi. Our understanding of the catalytic itinerary of GH45s has been incomplete because a crystal structure with substrate spanning the -1 to +1 subsites is currently lacking.

View Article and Find Full Text PDF

Cellulase enzymes deconstruct recalcitrant cellulose into soluble sugars, making them a biocatalyst of biotechnological interest for use in the nascent lignocellulosic bioeconomy. Cellobiohydrolases (CBHs) are cellulases capable of liberating many sugar molecules in a processive manner without dissociating from the substrate. Within the complete processive cycle of CBHs, dissociation from the cellulose substrate is rate limiting, but the molecular mechanism of this step is unknown.

View Article and Find Full Text PDF

Microbial conversion of aromatic compounds is an emerging and promising strategy for valorization of the plant biopolymer lignin. A critical and often rate-limiting reaction in aromatic catabolism is -aryl-demethylation of the abundant aromatic methoxy groups in lignin to form diols, which enables subsequent oxidative aromatic ring-opening. Recently, a cytochrome P450 system, GcoAB, was discovered to demethylate guaiacol (2-methoxyphenol), which can be produced from coniferyl alcohol-derived lignin, to form catechol.

View Article and Find Full Text PDF

Glycoside Hydrolase Family 7 cellobiohydrolases (GH7 CBHs) catalyze cellulose depolymerization in cellulolytic eukaryotes, making them key discovery and engineering targets. However, there remains a lack of robust structure-activity relationships for these industrially important cellulases. Here, we compare CBHs from Trichoderma reesei (TrCel7A) and Penicillium funiculosum (PfCel7A), which exhibit a multi-modular architecture consisting of catalytic domain (CD), carbohydrate-binding module, and linker.

View Article and Find Full Text PDF

In nature, many microbes secrete mixtures of glycoside hydrolases, oxidoreductases, and accessory enzymes to deconstruct polysaccharides and lignin in plants. These enzymes are often decorated with N- and O-glycosylation, the roles of which have been broadly attributed to protection from proteolysis, as the extracellular milieu is an aggressive environment. Glycosylation has been shown to sometimes affect activity, but these effects are not fully understood.

View Article and Find Full Text PDF

In several important classes of inverting carbohydrate-active enzymes, the identity of the catalytic base remains elusive, including in family 6 Glycoside Hydrolase (GH6) enzymes, which are key components of cellulase cocktails for cellulose depolymerization. Despite many structural and kinetic studies with both wild-type and mutant enzymes, especially on the () GH6 cellulase (Cel6A), the catalytic base in the single displacement inverting mechanism has not been definitively identified in the GH6 family. Here, we employ transition path sampling to gain insight into the catalytic mechanism, which provides unbiased atomic-level understanding of key order parameters involved in cleaving the strong glycosidic bond.

View Article and Find Full Text PDF

The processive cycle of the bacterial cellulose synthase (Bcs) includes the addition of a single glucose moiety to the end of a growing cellulose chain followed by the translocation of the nascent chain across the plasma membrane. The mechanism of this translocation and its precise location within the processive cycle are not well understood. In particular, the molecular details of how a polymer (cellulose) whose basic structural unit is a dimer (cellobiose) can be constructed by adding one monomer (glucose) at a time are yet to be elucidated.

View Article and Find Full Text PDF

Unlabelled: Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) are enzymes commonly employed in plant cell wall degradation across eukaryotic kingdoms of life, as they provide significant hydrolytic potential in cellulose turnover. To date, many fungal GH7 CBHs have been examined, yet many questions regarding structure-activity relationships in these important natural and commercial enzymes remain. Here, we present the crystal structures and a biochemical analysis of two GH7 CBHs from social amoeba: Dictyostelium discoideum Cel7A (DdiCel7A) and Dictyostelium purpureum Cel7A (DpuCel7A).

View Article and Find Full Text PDF

Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale.

View Article and Find Full Text PDF

Nucleation from solution is a ubiquitous phenomenon with relevance to myriad scientific disciplines, including pharmaceuticals, biomineralization, and disease. One prominent example is the nucleation of clathrate hydrates, multicomponent crystalline inclusion compounds relevant to the energy industry where they block pipelines and also constitute a potential vast energy resource. Despite their importance, the molecular mechanism of incipient hydrate formation remains unknown.

View Article and Find Full Text PDF

Translocation of carbohydrate polymers through protein tunnels and clefts is a ubiquitous biochemical phenomenon in proteins such as polysaccharide synthases, glycoside hydrolases, and carbohydrate-binding modules. Although static snapshots of carbohydrate polymer binding in proteins have long been studied via crystallography and spectroscopy, the molecular details of polysaccharide chain processivity have not been elucidated. Here, we employ simulation to examine how a cellulose chain translocates by a disaccharide unit during the processive cycle of a glycoside hydrolase family 7 cellobiohydrolase.

View Article and Find Full Text PDF

Polysaccharide depolymerization in nature is primarily accomplished by processive glycoside hydrolases (GHs), which abstract single carbohydrate chains from polymer crystals and cleave glycosidic linkages without dissociating after each catalytic event. Understanding the molecular-level features and structural aspects of processivity is of importance due to the prevalence of processive GHs in biomass-degrading enzyme cocktails. Here, we describe recent advances towards the development of a molecular-level theory of processivity for cellulolytic and chitinolytic enzymes, including the development of novel methods for measuring rates of key steps in processive action and insights gained from structural and computational studies.

View Article and Find Full Text PDF

Glycoside hydrolases (GHs) cleave glycosidic linkages in carbohydrates, typically via inverting or retaining mechanisms, the latter of which proceeds via a two-step mechanism that includes formation of a glycosyl-enzyme intermediate. We present two new structures of the catalytic domain of Hypocrea jecorina GH Family 7 cellobiohydrolase Cel7A, namely a Michaelis complex with a full cellononaose ligand and a glycosyl-enzyme intermediate, that reveal details of the 'static' reaction coordinate. We also employ transition path sampling to determine the 'dynamic' reaction coordinate for the catalytic cycle.

View Article and Find Full Text PDF

Methane hydrates are ice-like inclusion compounds with importance to the oil and natural gas industry, global climate change, and gas transportation and storage. The molecular mechanism by which these compounds form under conditions relevant to industry and nature remains mysterious. To understand the mechanism of methane hydrate nucleation from supersaturated aqueous solutions, we performed simulations at controlled and realistic supersaturation.

View Article and Find Full Text PDF

Short intense laser pulses of visible and infrared light can dramatically accelerate crystal nucleation from transparent solutions; previous studies invoke mechanisms that are only applicable for nucleation of ordered phases or high dielectric phases. However, we show that similar laser pulses induce CO(2) bubble nucleation in carbonated water. Additionally, in water that is cosupersaturated with argon and glycine, argon bubbles escaping from the water can induce crystal nucleation without a laser.

View Article and Find Full Text PDF

Recent experiments have demonstrated that intense, nanosecond laser pulses can induce crystal nucleation from supersaturated solutions that are transparent at the incident wavelengths, a phenomenon termed nonphotochemical laser-induced nucleation (NPLIN). Previous work has proposed that this effect is due to the alignment of solute molecules in solution due to the electric field of the applied laser light, promoting crystalline order. We have used simulations of NPLIN to examine how an orientational bias in solution affects nucleation with Monte Carlo simulations of a Potts lattice gas model.

View Article and Find Full Text PDF

In the high friction limit of Kramers' theory, the diffusion coefficient for motion along the reaction coordinate is a crucial parameter in determining reaction rates from mean first passage times. The Einstein relation between mean squared displacement, time, and diffusivity is inaccurate at short times because of ballistic motion and inaccurate at long times because trajectories drift away from maxima in the potential of mean force. Starting from the Smoluchowski equation for a downward parabolic barrier, we show how drift induced by the potential of mean force can be included in estimating the diffusivity.

View Article and Find Full Text PDF