Women rapidly progress from recreational cocaine use to dependence, consume greater quantities of cocaine, experience more positive subjective effects of cocaine and have higher incidences of relapse during abstinence. These effects have been replicated in animal models of cocaine addiction and indicate an enhanced sensitivity and therefore, vulnerability of females to cocaine addiction. Furthermore, it has been demonstrated that estradiol (E2) is a key mediator of the aforementioned effects of cocaine in women and female animals.
View Article and Find Full Text PDFGGGGCC repeat expansion in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat RNAs can be translated into dipeptide repeat proteins, including poly(GR), whose mechanisms of action remain largely unknown. In an RNA-seq analysis of poly(GR) toxicity in Drosophila, we found that several antimicrobial peptide genes, such as metchnikowin (Mtk), and heat shock protein (Hsp) genes are activated.
View Article and Find Full Text PDFMany pathogenic missense mutations are found in protein positions that are neither well-conserved nor fall in any known functional domains. Consequently, we lack any mechanistic underpinning of dysfunction caused by such mutations. We explored the disruption of allosteric dynamic coupling between these positions and the known functional sites as a possible mechanism for pathogenesis.
View Article and Find Full Text PDFAcetyl-CoA synthetase (ACS) is a member of a large superfamily of enzymes that display diverse substrate specificities, with a common mechanism of catalyzing the formation of a thioester bond between Coenzyme A and a carboxylic acid, while hydrolyzing ATP to AMP and pyrophosphate. As an activated form of acetate, acetyl-CoA is a key metabolic intermediate that links many metabolic processes, including the TCA cycle, amino acid metabolism, fatty acid metabolism and biosynthetic processes that generate many polyketides and some terpenes. We explored the structural basis of the specificity of ACS for only activating acetate, whereas other members of this superfamily utilize a broad range of other carboxylate substrates.
View Article and Find Full Text PDFRecent studies, in male rodents, have begun to elucidate a role for the GABAergic neurons in the tail of the ventral tegmental area (tVTA) in morphine withdrawal. To date, the mechanisms underlying morphine withdrawal have been studied almost exclusively in male animals. As a result, there is a considerable gap in our current understanding of the processes underlying sex differences in morphine withdrawal behaviors and its effects on cellular activity in the tVTA in females.
View Article and Find Full Text PDFThe conformational dynamics of proteins is rarely used in methodologies used to predict the impact of genetic mutations due to the paucity of three-dimensional protein structures as compared to the vast number of available sequences. Until now a three-dimensional (3D) structure has been required to predict the conformational dynamics of a protein. We introduce an approach that estimates the conformational dynamics of a protein, without relying on structural information.
View Article and Find Full Text PDFProlonged ketamine exposure in neonates at anesthetic doses is known to cause long-term impairments of learning and memory. A current theoretical mechanism explains this phenomenon as being neuro-excitotoxicity mediated by compensatory upregulation of N-methyl-d-aspartate receptors (NMDARs), which then initiates widespread neuroapoptosis. Additionally, the excitatory behavior of GABAergic synaptic transmission mediated by GABA receptors (GABARs), occurring during the early neuronal development period, is proposed as contributing to the susceptibility of neonatal neurons to ketamine-induced injury.
View Article and Find Full Text PDFSequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss.
View Article and Find Full Text PDFRecent studies have shown that the protein interface sites between individual monomeric units in biological assemblies are enriched in disease-associated non-synonymous single nucleotide variants (nsSNVs). To elucidate the mechanistic underpinning of this observation, we investigated the conformational dynamic properties of protein interface sites through a site-specific structural dynamic flexibility metric (dfi) for 333 multimeric protein assemblies. dfi measures the dynamic resilience of a single residue to perturbations that occurred in the rest of the protein structure and identifies sites contributing the most to functionally critical dynamics.
View Article and Find Full Text PDF