Fluorophores experience altered emission lifetimes when incorporated into and liberated from macromolecules or molecular aggregates; this trend suggests the potential for a fluorescent, responsive probe capable of undergoing self-assembly and aggregation and consequently altering the lifetime of its fluorescent moiety to provide contrast between the active and inactive probes. We developed a cyanobenzothioazole-fluorescein conjugate (1), and spectroscopically examined the lifetime changes caused by its reduction-induced aggregation in vitro. A decrease in lifetime was observed for compound 1 in a buffered system activated by the biological reducing agent glutathione, thus suggesting a possible approach for designing responsive self-aggregating lifetime imaging probes.
View Article and Find Full Text PDFResolving the population dynamics of multiple triplet excitons on time scales comparable to their lifetimes is a key challenge for multiexciton harvesting strategies, such as singlet fission. We show that this information can be obtained from fluorescence quenching dynamics and stochastic kinetic modeling simulations of single nanoparticles comprising self-assembled aggregated chains of poly(3-hexylthiophene) (P3HT). These multichromophoric structures exhibit the elusive J-aggregate type excitonic coupling leading to delocalized intrachain excitons that undergo facile triplet formation mediated by interchain charge transfer states.
View Article and Find Full Text PDF