Publications by authors named "Brandon Bizup"

In addition to the essential structural and catalytic functions of zinc, evolution has adopted synaptic zinc as a neuromodulator. In the brain, synaptic zinc is released primarily from glutamatergic neurons, notably in the neocortex, hippocampus, amygdala, and auditory brainstem. In these brain areas, synaptic zinc is essential for neuronal and sensory processing fine-tuning.

View Article and Find Full Text PDF

Exposure to loud noise triggers sensory organ damage and degeneration that, in turn, leads to hearing loss. Despite the troublesome impact of noise-induced hearing loss (NIHL) in individuals and societies, treatment strategies that protect and restore hearing are few and insufficient. As such, identification and mechanistic understanding of the signaling pathways involved in NIHL are required.

View Article and Find Full Text PDF

Peripheral sensory organ damage leads to compensatory cortical plasticity that is associated with a remarkable recovery of cortical responses to sound. The precise mechanisms that explain how this plasticity is implemented and distributed over a diverse collection of excitatory and inhibitory cortical neurons remain unknown. After noise trauma and persistent peripheral deficits, we found recovered sound-evoked activity in mouse A1 excitatory principal neurons (PNs), parvalbumin- and vasoactive intestinal peptide-expressing neurons (PVs and VIPs), but reduced activity in somatostatin-expressing neurons (SOMs).

View Article and Find Full Text PDF

Synaptic zinc is a neuromodulator that shapes synaptic transmission and sensory processing. The maintenance of synaptic zinc is dependent on the vesicular zinc transporter, ZnT3. Hence, the ZnT3 knockout mouse has been a key tool for studying the mechanisms and functions of synaptic zinc.

View Article and Find Full Text PDF

Exposure to loud noise can cause hearing loss and tinnitus in mice and humans. In mice, one major underlying mechanism of noise-induced tinnitus is hyperactivity of auditory brainstem neurons, due at least in part, to decreased Kv7.2/3 (KCNQ2/3) potassium channel activity.

View Article and Find Full Text PDF

The ventral tegmental area (VTA) has been implicated in a number of psychiatric disorders, including schizophrenia, depression, and bipolar disorder. One major regulator of the mesolimbic dopaminergic system is the medial prefrontal cortex (mPFC), which makes direct and indirect connections to the hippocampus and amygdala, as well as directly to the VTA. The mPFC is comprised of two subregions: the infralimbic and prelimbic cortices (ilPFC and plPFC).

View Article and Find Full Text PDF

High-frequency stimulation of the nucleus accumbens, also known as deep brain stimulation (DBS), is currently used to alleviate obsessive compulsive symptoms when pharmacotherapy is ineffective. However, the mechanism by which DBS achieves its therapeutic actions is not understood. Imaging studies and the actions of dopaminergic drugs in untreated patients suggest that the dopamine (DA) system likely plays a role in the pathophysiology of obsessive compulsive disorder.

View Article and Find Full Text PDF

Obsessive compulsive disorder (OCD) is a psychiatric condition defined by intrusive thoughts (obsessions) associated with compensatory and repetitive behaviour (compulsions). However, advancement in our understanding of this disorder has been hampered by the absence of effective animal models and correspondingly analysis of the physiological changes that may be present in these models. To address this, we have evaluated two current rodent models of OCD; repeated injection of dopamine D2 agonist quinpirole and repeated adolescent injection of the tricyclic agent clomipramine in combination with a behavioural paradigm designed to produce compulsive lever pressing.

View Article and Find Full Text PDF