Publications by authors named "Brandon Andrade-Gagnon"

Recent advances in the treatment of chronic wounds have focused on the development of effective strategies for cutting-edge wound dressings based on nanostructured materials, particularly biocompatible poly(vinyl alcohol) (PVA)-based electro-spun (e-spun) nanofibers. However, PVA nanofibers need to be chemically crosslinked to ensure their dimensional stability in aqueous environment and their capability to encapsulate bioactive molecules. Herein, a robust approach for the fabrication of pH-degradable e-spun PVA nanofibers crosslinked with dynamic boronic ester (BE) linkages through a coupling reaction of PVA hydroxyl groups with the boronic acid groups of a phenyl diboronic acid crosslinker is reported.

View Article and Find Full Text PDF

Smart nanoassemblies degradable through the cleavage of acid-labile linkages have attracted significant attention because of their biological relevance found in tumor tissues. Despite their high potential to achieve controlled/enhanced drug release, a systematic understanding of structural factors that affect their pH sensitivity remains challenging, particulary in the consruction of effective acid-degradable shell-sheddable nanoassemblies. Herein, the authors report the synthesis and acid-responsive degradation through acid-catalyzed hydrolysis of three acetal and ketal diols and identify benzaldehyde acetal (BzAA) exhibiting optimal hydrolysis profiles in targeted pH ranges to be a suitable candidate for junction acid-labile linkage.

View Article and Find Full Text PDF

Tetraphenylethylene-functionalized amphiphilic Janus dendrimers of up to third generation are synthesized. Their self-assembly has been studied under kinetic and thermodynamic control. By varying the dendrimer generation number and the self-assembly condition, fluorescent dendrimersomes of tunable size (∼60-200 nm) and quantum yield (5.

View Article and Find Full Text PDF

Polymeric nanomaterials that degrade in acidic environments have gained considerable attention in nanomedicine for intracellular drug delivery and cancer therapy. Among various acid-degradable linkages, spirocyclic acetals have rarely been used to fabricate such vehicles. In addition to acid sensitivity, they benefit from conformational rigidity that is otherwise not attainable by their non-spirocyclic analogs.

View Article and Find Full Text PDF