Publications by authors named "Brandi Sigmon"

Article Synopsis
  • Phenotypic plasticity refers to how a single genotype can produce different traits (phenotypes) depending on environmental factors, which is important for predicting plant characteristics in varying conditions.
  • This study focused on sorghum lines, examining how flowering time and plant height vary across 14 different environments, ultimately creating an environmental index to connect these conditions and inform genetic analysis.
  • Genome-wide association studies (GWAS) identified new genetic regions involved in these traits, leading to successful predictions of plant performance, which can aid in breeding efforts for future environmental challenges.
View Article and Find Full Text PDF

Leaf chlorophyll concentration was measured for 84 publicly available maize hybrids grown under three nitrogen fertilizer treatments in two contrasting environments in Nebraska. The effect of nitrogen treatment on chlorophyll response was found to be significant (p < 0.05) for both locations.

View Article and Find Full Text PDF

A number of crop wild relatives can tolerate extreme stress to a degree outside the range observed in their domesticated relatives. However, it is unclear whether or how the molecular mechanisms employed by these species can be translated to domesticated crops. Paspalum (Paspalum vaginatum) is a self-incompatible and multiply stress-tolerant wild relative of maize and sorghum.

View Article and Find Full Text PDF

Classical genetic studies have identified many cases of pleiotropy where mutations in individual genes alter many different phenotypes. Quantitative genetic studies of natural genetic variants frequently examine one or a few traits, limiting their potential to identify pleiotropic effects of natural genetic variants. Widely adopted community association panels have been employed by plant genetics communities to study the genetic basis of naturally occurring phenotypic variation in a wide range of traits.

View Article and Find Full Text PDF

The root-associated microbiome (rhizobiome) affects plant health, stress tolerance, and nutrient use efficiency. However, it remains unclear to what extent the composition of the rhizobiome is governed by intraspecific variation in host plant genetics in the field and the degree to which host plant selection can reshape the composition of the rhizobiome. Here, we quantify the rhizosphere microbial communities associated with a replicated diversity panel of 230 maize (.

View Article and Find Full Text PDF

Community association populations are composed of phenotypically and genetically diverse accessions. Once these populations are genotyped, the resulting marker data can be reused by different groups investigating the genetic basis of different traits. Because the same genotypes are observed and scored for a wide range of traits in different environments, these populations represent a unique resource to investigate pleiotropy.

View Article and Find Full Text PDF

Determining the genetic control of root system architecture (RSA) in plants via large-scale genome-wide association study (GWAS) requires high-throughput pipelines for root phenotyping. We developed Core Root Excavation using Compressed-air (CREAMD), a high-throughput pipeline for the cleaning of field-grown roots, and Core Root Feature Extraction (COFE), a semiautomated pipeline for the extraction of RSA traits from images. CREAMD-COFE was applied to diversity panels of maize () and sorghum (), which consisted of 369 and 294 genotypes, respectively.

View Article and Find Full Text PDF

Background: Hyperspectral reflectance data in the visible, near infrared and shortwave infrared range (VIS-NIR-SWIR, 400-2500 nm) are commonly used to nondestructively measure plant leaf properties. We investigated the usefulness of VIS-NIR-SWIR as a high-throughput tool to measure six leaf properties of maize plants including chlorophyll content (CHL), leaf water content (LWC), specific leaf area (SLA), nitrogen (N), phosphorus (P), and potassium (K). This assessment was performed using the lines of the maize diversity panel.

View Article and Find Full Text PDF

Modern maize was domesticated from Zea mays parviglumis, a teosinte, about 9000 years ago in Mexico. Genes thought to have been selected upon during the domestication of crops are commonly known as domestication loci. The ramosa1 (ra1) gene encodes a putative transcription factor that controls branching architecture in the maize tassel and ear.

View Article and Find Full Text PDF