Publications by authors named "Brandi Mahaney"

Double strand breaks (DSBs) represent highly deleterious DNA damage and need to be accurately repaired. Homology-directed repair and non-homologous end joining (NHEJ) are the two major DSB repair pathways that are highly conserved from yeast to mammals. The choice between these pathways is largely based on 5' to 3' DNA resection, and NHEJ proceeds only if resection has not been initiated.

View Article and Find Full Text PDF

Nej1 is an essential factor in the non-homologous end-joining (NHEJ) pathway and interacts with the DNA ligase complex, Lif1-Dnl4, through interactions with Lif1. We have mapped K331-V338 in the C-terminal region of Nej1 to be critical for its functionality during repair. Truncation and alanine scanning mutagenesis have been used to identify a motif in Nej1, KKRK (331-334), which is important for both nuclear targeting and NHEJ repair after localization.

View Article and Find Full Text PDF

DNA double strand breaks (DSBs), induced by ionizing radiation (IR) and endogenous stress including replication failure, are the most cytotoxic form of DNA damage. In human cells, most IR-induced DSBs are repaired by the nonhomologous end joining (NHEJ) pathway. One of the most critical steps in NHEJ is ligation of DNA ends by DNA ligase IV (LIG4), which interacts with, and is stabilized by, the scaffolding protein X-ray cross-complementing gene 4 (XRCC4).

View Article and Find Full Text PDF

The XRCC4-like factor (XLF)-XRCC4 complex is essential for nonhomologous end joining, the major repair pathway for DNA double strand breaks in human cells. Yet, how XLF binds XRCC4 and impacts nonhomologous end joining functions has been enigmatic. Here, we report the XLF-XRCC4 complex crystal structure in combination with biophysical and mutational analyses to define the XLF-XRCC4 interactions.

View Article and Find Full Text PDF

An analogue of orotidine 5'-monophosphate (OMP), 6-phosphonouridine 5'-monophosphate is a competitive inhibitor of OMP decarboxylase from E. coli, binding with an affinity similar to that of OMP. Hence the active site is capable of stabilizing negative charge distributed out of the plane of the pyrimidine ring, consistent with the notion of ground state destabilization.

View Article and Find Full Text PDF

DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray scattering, reveal major structural reorganizations that choreograph NHEJ initiation. The Ku80 C-terminal region forms a flexible arm that extends from the DNA-binding core to recruit and retain DNA-PKcs at DSBs.

View Article and Find Full Text PDF

DNA DSBs (double-strand breaks) are considered the most cytotoxic type of DNA lesion. They can be introduced by external sources such as IR (ionizing radiation), by chemotherapeutic drugs such as topoisomerase poisons and by normal biological processes such as V(D)J recombination. If left unrepaired, DSBs can cause cell death.

View Article and Find Full Text PDF

Nonhomologous end joining (NHEJ) is the major pathway for the repair of DNA double strand breaks (DSBs) in human cells. NHEJ requires the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku70, Ku80, XRCC4, DNA ligase IV and Artemis, as well as DNA polymerases mu and lambda and polynucleotide kinase. Recent studies have identified an additional participant, XLF, for XRCC4-like factor (also called Cernunnos), which interacts with the XRCC4-DNA ligase IV complex and stimulates its activity in vitro, however, its precise role in the DNA damage response is not fully understood.

View Article and Find Full Text PDF

A proteome survey and MS analysis were conducted to investigate glucose metabolism in Fusobacterium varium, a butyrate-producing constituent of the indigenous human gut microflora. The bacterium was capable of catabolizing glucose as the main energy source via the Embden-Meyerhof-Parnas pathway. 2-DE analyses revealed that the apparent concentrations of the six identified glycolytic enzymes (pyruvate kinase, enolase, glucose-6-phosphate isomerase, phosphoglycerate kinase, triosephosphate isomerase, and glyceraldehyde-3-phosphate dehydrogenase) were specifically increased in response to the presence of glucose in the chemically defined minimal growth medium, and did not diminish when the medium was additionally supplemented with L-glutamate, an amino acid readily fermented by members of the Fusobacterium genus.

View Article and Find Full Text PDF