LOL, a fungal secondary metabolite gene cluster found in Epichloë and Neotyphodium species, is responsible for production of insecticidal loline alkaloids. To analyze the genetic architecture and to predict the evolutionary history of LOL, we compared five clusters from four fungal species (single clusters from Epichloë festucae, Neotyphodium sp. PauTG-1, Neotyphodium coenophialum, and two clusters we previously characterized in Neotyphodium uncinatum).
View Article and Find Full Text PDFWe constructed and characterized a bacterial artificial chromosome (BAC) library for Epichloë festucae, a genetically tractable fungal plant mutualist. The 6144 clone library with an average insert size of 87kb represents at least 18-fold coverage of the 29 Mb genome. We used the library to assemble a 110kb contig spanning the putative ornithine decarboxylase (odc) ortholog and subsequently expanded it to 228kb with a single walking step in each direction.
View Article and Find Full Text PDFDuring meiotic chromosome pairing, a loop of unpaired DNA induces the silencing of all paired and unpaired homologous DNA via meiotic silencing, an RNA-mediated post-transcriptional gene-silencing mechanism. To test the effect of unpaired DNA on adjacent genes, we constructed strains containing the DNA of a transformation marker integrated immediately downstream of the Ascospore maturation-1 ( Asm-1) gene and tested whether this unpaired DNA silences asm-1(+). We conclude that unpaired downstream DNA has no effect on Asm-1 expression during meiosis or ascospore development, which suggests that the silencing signal produced by unpaired DNA does not propagate onto adjacent paired regions.
View Article and Find Full Text PDF