Rhodopseudomonas palustris is an attractive option for biotechnical applications and industrial engineering due to its metabolic versatility and its ability to catabolize a wide variety of feedstocks and convert them to several high-value products. Given its adaptable metabolism, R. palustris has been studied and applied in an extensive variety of applications such as examining metabolic tradeoffs for environmental perturbations, biodegradation of aromatic compounds, environmental remediation, biofuel production, agricultural biostimulation, and bioelectricity production.
View Article and Find Full Text PDFCGA009 is a metabolically robust microbe that can utilize lignin breakdown products to produce polyhydroxyalkanoates (PHAs), biopolymers with the potential to replace conventional plastics. Our recent efforts suggest PHA granule formation is a limiting factor for maximum production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by The Phap1 phasin () from the PHB-producing model bacterium H16 was expressed in with the aim of overproducing PHBV from the lignin breakdown product coumarate by fostering smaller and more abundant granules. Expression of yielded PHBV production from aerobically (0.
View Article and Find Full Text PDFPolyhydroxybutyrate (PHB) is a sustainable bioplastic produced by bacteria that is a potential replacement for conventional plastics. This study delivers an integrated experimental and computational modeling approach to decipher metabolic factors controlling PHB production and offers engineering design strategies to boost production. In the metabolically robust Rhodopseudomonas palustris CGA009, PHB production significantly increased when grown on the carbon- and electron-rich lignin breakdown product p-coumarate (CHO) compared to virtually no PHB titer from acetate (CHNaO).
View Article and Find Full Text PDF