Background: Myeloid cells, especially mononuclear phagocytes, which include monocytes, macrophages and dendritic cells (DC), play vital roles in innate immunity, and in the initiation and maintenance of adaptive immunity. While T cell-associated activation pathways and cytokines have been identified and evaluated in inflammatory bowel disease (IBD) patients (Neurath, Nat Rev Gastroenterol Hepatol 14:269-78, 1989), the role of mononuclear phagocytes are less understood. Recent reports support the crucial role of DC subsets in the development of acute colitis models (Arimura et al.
View Article and Find Full Text PDFCardiac regeneration following myocardial infarction rests with the potential of c-kit+ cardiac progenitor cells (CPCs) to repopulate damaged myocardium. The ability of CPCs to reconstitute the heart is restricted by patient age and disease progression. Increasing CPC proliferation, telomere length, and survival will improve the ability of autologous CPCs to be successful in myocardial regeneration.
View Article and Find Full Text PDFObjectives: The goal of this study was to demonstrate the enhancement of human cardiac progenitor cell (hCPC) reparative and regenerative potential by genetic modification for the treatment of myocardial infarction.
Background: Regenerative potential of stem cells to repair acute infarction is limited. Improved hCPC survival, proliferation, and differentiation into functional myocardium will increase efficacy and advance translational implementation of cardiac regeneration.
Rationale: Cardiac progenitor cells are important for maintenance of myocardial structure and function, but molecular mechanisms governing these progenitor cells remain obscure and require elucidation to enhance regenerative therapeutic approaches.
Objective: To understand consequences of stem cell antigen-1 (Sca-1) deletion on functional properties of c-kit+ cardiac progenitor cells and myocardial performance using a Sca-1 knock-out/green fluorescent protein knock-in reporter mouse (ScaKI).
Methods And Results: Genetic deletion of Sca-1 results in early-onset cardiac contractile deficiency as determined by echocardiography and hemodynamics as well as age-associated hypertrophy.
Rationale: Bone marrow-derived cells to treat myocardial injury improve cardiac function and support beneficial cardiac remodeling. However, survival of stem cells is limited due to low proliferation of transferred cells.
Objective: To demonstrate long-term potential of c-kit(+) bone marrow stem cells (BMCs) enhanced with Pim-1 kinase to promote positive cardiac remodeling.
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression.
View Article and Find Full Text PDFNucleolar stress, characterized by loss of nucleolar integrity, has not been described in the cardiac context. In addition to ribosome biogenesis, nucleoli are critical for control of cell proliferation and stress responses. Our group previously demonstrated induction of the nucleolar protein nucleostemin (NS) in response to cardiac pathological insult.
View Article and Find Full Text PDFRationale: Cardioprotective effects of Pim-1 kinase have been previously reported but the underlying mechanistic basis may involve a combination of cellular and molecular mechanisms that remain unresolved. The elucidation of the mechanistic basis for Pim-1 mediated cardioprotection provides important insights for designing therapeutic interventional strategies to treat heart disease.
Objective: Effects of cardiac-specific Pim-1 kinase expression on the cardiac progenitor cell (CPC) population were examined to determine whether Pim-1 mediates beneficial effects through augmenting CPC activity.
Aims: Cardiac stem cells (CSCs) show potential as a cellular therapeutic approach to blunt tissue damage and facilitate reparative and regenerative processes after myocardial infarction. Despite multiple published reports of improvement, functional benefits remain modest using normal stem cells delivered by adoptive transfer into damaged myocardium. The goal of this study is to enhance survival and proliferation of CSCs that have undergone lineage commitment in early phases as evidenced by expression of proteins driven by the alpha-myosin heavy chain (alphaMHC) promoter.
View Article and Find Full Text PDFCumulative evidence indicates that myocardium responds to growth or injury by recruitment of stem and/or progenitor cells that participate in repair and regenerative processes. Unequivocal identification of this population has been hampered by lack of reagents or markers specific to the recruited population, leading to controversies regarding the nature of these cells. Use of a transgenic mouse expressing green fluorescent protein driven by the c-kit promoter allows for unambiguous identification of this cell population.
View Article and Find Full Text PDFPurpose: Bendamustine has shown clinical activity in patients with disease refractory to conventional alkylator chemotherapy. The purpose of this study was to characterize the mechanisms of action of bendamustine and to compare it with structurally related compounds.
Experimental Design: Bendamustine was profiled in the National Cancer Institute in vitro antitumor screen.