Publications by authors named "Branden S Kolarik"

Research into the behavioral and neural correlates of spatial cognition and navigation has benefited greatly from recent advances in virtual reality (VR) technology. Devices such as head-mounted displays (HMDs) and omnidirectional treadmills provide research participants with access to a more complete range of body-based cues, which facilitate the naturalistic study of learning and memory in three-dimensional (3D) spaces. One limitation to using these technologies for research applications is that they almost ubiquitously require integration with video game development platforms, also known as game engines.

View Article and Find Full Text PDF

Age-related structural and functional changes in the hippocampus can have a severe impact on hippocampal-dependent memory performance. Here, we tested the hypothesis that a real-world spatial exploration and learning intervention would improve hippocampal-dependent memory performance in healthy older adults. We developed a scavenger hunt task that participants performed over the course of a 4-week behavioral intervention period.

View Article and Find Full Text PDF

Experiments on rodents have demonstrated that transecting the white matter fibre pathway linking the hippocampus with an array of cortical and subcortical structures - the fornix - impairs flexible navigational learning in the Morris Water Maze (MWM), as well as similar spatial learning tasks. While diffusion magnetic resonance imaging (dMRI) studies in humans have linked inter-individual differences in fornix microstructure to episodic memory abilities, its role in human spatial learning is currently unknown. We used high-angular resolution diffusion MRI combined with constrained spherical deconvolution-based tractography, to ask whether inter-individual differences in fornix microstructure in healthy young adults would be associated with spatial learning in a virtual reality navigation task.

View Article and Find Full Text PDF

Unlabelled: Increasing evidence suggests that the human hippocampus contributes to a range of different behaviors, including episodic memory, language, short-term memory, and navigation. A novel theoretical framework, the Precision and Binding Model, accounts for these phenomenon by describing a role for the hippocampus in high-resolution, complex binding. Other theories like Cognitive Map Theory, in contrast, predict a specific role for the hippocampus in allocentric navigation, while Declarative Memory Theory predicts a specific role in delay-dependent conscious memory.

View Article and Find Full Text PDF

Damage to the medial temporal lobes produces profound amnesia, greatly impairing the ability of patients to learn about new associations and events. While studies in rodents suggest a strong link between damage to the hippocampus and the ability to navigate using distal landmarks in a spatial environment, the connection between navigation and memory in humans remains less clear. Past studies on human navigation have provided mixed findings about whether patients with damage to the medial temporal lobes can successfully acquire and navigate new spatial environments, possibly due, in part, to issues related to patient demographics and characterization of medial temporal lobe damage.

View Article and Find Full Text PDF