Publications by authors named "Branden Moriarity"

Osteosarcoma (OSA) is a highly malignant bone tumor for which more than 50% of patients have or will develop metastatic disease, resulting in an abysmal 5-year survival rate of <29%. Despite the advances in science and medicine, the etiology of OSA remains unclear. Similarly, the standard of care (surgery and chemotherapy) has changed little in the past 5 decades.

View Article and Find Full Text PDF

Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes in vivo and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel KCNB2 as a candidate maintenance driver.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by dysregulated B cell activation, autoantibody production, and nephritis. B cell activating factor (BAFF) overexpression enhances autoreactive B-cell survival, driving autoimmunity. BAFF specific belimumab and CD20 specific rituximab antibodies are used for SLE therapy but are not curative, highlighting the need for alternative B cell depletion therapies.

View Article and Find Full Text PDF

Allogeneic chimaeric antigen receptor T cells (allo-CAR T cells) derived from healthy donors could provide rapid access to standardized and affordable batches of therapeutic cells if their rejection by the host's immune system is avoided. Here, by means of an in vivo genome-wide CRISPR knockout screen, we show that the deletion of Fas or B2m in allo- T cells increases their survival in immunocompetent mice. Human B2M allo-CAR T cells become highly sensitive to rejection mediated by natural killer (NK) cells, whereas FAS CAR T cells expressing normal levels of human leukocyte antigen I remain resistant to NK cells.

View Article and Find Full Text PDF

Gamma delta (γδ) T cells are defined by their unique ability to recognize a limited repertoire of non-peptide, non-MHC-associated antigens on transformed and pathogen-infected cells. In addition to their lack of alloreactivity, γδ T cells exhibit properties distinct from other lymphocyte subsets, prompting significant interest in their development as an off-the-shelf cellular immunotherapeutic. However, their low abundance in circulation, heterogeneity, limited methods for expansion, and under-developed methodologies for genetic modification have hindered basic study and clinical application of γδ T cells.

View Article and Find Full Text PDF

Enzymopathy disorders are the result of missing or defective enzymes. Among these enzymopathies, mucopolysaccharidosis type I is a rare genetic lysosomal storage disorder caused by mutations in the gene encoding alpha-L-iduronidase (IDUA), which ultimately causes toxic buildup of glycosaminoglycans (GAGs). There is currently no cure and standard treatments provide insufficient relief to the skeletal structure and central nervous system (CNS).

View Article and Find Full Text PDF

CRISPR-Cas9 and novel cas fusion proteins leveraging specific DNA targeting ability combined with deaminases or reverse transcriptases have revolutionized genome editing. However, their efficacy heavily relies upon protein variants, targeting single guide RNAs, and surrounding DNA sequence context within the targeted loci. This necessitates the need for efficient and rapid screening methods to evaluate these editing reagents and designs.

View Article and Find Full Text PDF

Enzymopathy disorders are the result of missing or defective enzymes. Amongst these enzymopathies, mucopolysaccharidosis type I, is a rare genetic lysosomal storage disorder caused by mutations in the gene encoding alpha-L-iduronidase (IDUA), ultimately causes toxic build-up of glycosaminoglycans (GAGs). There is currently no cure and standard treatments provide insufficient relief to the skeletal structure and central nervous system (CNS).

View Article and Find Full Text PDF

Cellular therapies for the treatment of human diseases, such as chimeric antigen receptor (CAR) T and natural killer (NK) cells have shown remarkable clinical efficacy in treating hematological malignancies; however, current methods mainly utilize viral vectors that are limited by their cargo size capacities, high cost, and long timelines for production of clinical reagent. Delivery of genetic cargo via DNA transposon engineering is a more timely and cost-effective approach, yet has been held back by less efficient integration rates. Here, we report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieves high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells.

View Article and Find Full Text PDF

Purpose: Pepinemab, a humanized IgG4 monoclonal antibody, targets the SEMA4D (CD100) antigen to inhibit binding to its high-affinity receptors (plexin B1/PLXNB1, plexin B2/PLXNB2) and low-affinity receptor (CD72). SEMA4D blockade leads to increased cytotoxic T-cell infiltration, delayed tumor growth, and durable tumor rejection in murine tumor models. Pepinemab was well tolerated and improved T cell infiltration in clinical studies in adults with refractory tumors.

View Article and Find Full Text PDF
Article Synopsis
  • NK cells can kill cancer cells but have shown only moderate success in treating cancer, which may require advanced gene editing techniques.
  • Researchers successfully applied CRISPR/Cas9 base editing in primary NK cells, achieving significant improvements in their functionality.
  • By combining this gene editing with a non-viral transposon method, they created enhanced CAR-NK cells that performed better in a model of Burkitt's lymphoma, offering a flexible new approach for designing effective immunotherapies.
View Article and Find Full Text PDF

The reliance on viral vectors for the production of genetically engineered immune cells for adoptive cellular therapies remains a translational bottleneck. Here we report a method leveraging the DNA repair pathway homology-mediated end joining, as well as optimized reagent composition and delivery, for the Cas9-induced targeted integration of large DNA payloads into primary human T cells with low toxicity and at efficiencies nearing those of viral vectors (targeted knock-in of 1-6.7 kb payloads at rates of up to 70% at multiple targeted genomic loci and with cell viabilities of over 80%).

View Article and Find Full Text PDF

Various molecular subclasses of hepatocellular carcinoma (HCC) exists, with many novel cooperating oncogenes and tumor suppressor genes involved in its tumorigenesis. The emerging importance of WNT signaling in HCC has been established. However, the intricate genetic mechanisms involved in this complex signaling pathway remains to be elucidated.

View Article and Find Full Text PDF

Comprehensive screenings to clarify indirect cell-cell interactions, such as those in the tumor microenvironment, especially comprehensive assessments of supporting cells' effects, are challenging. Therefore, in this study, indirect CRISPR screening for drug resistance with cell-cell interactions was invented. The photoconvertible fluorescent protein Dendra2 was inducted to supporting cells and explored the drug resistance responsible factors of supporting cells with CRISPR screenings.

View Article and Find Full Text PDF

CMV infection alters NK cell phenotype and function toward a more memory-like immune state. These cells, termed adaptive NK cells, typically express CD57 and NKG2C but lack expression of the FcRγ-chain (gene: FCER1G, FcRγ), PLZF, and SYK. Functionally, adaptive NK cells display enhanced Ab-dependent cellular cytotoxicity (ADCC) and cytokine production.

View Article and Find Full Text PDF

T cell receptor (TCR) transgenic mice represent an invaluable tool to study antigen-specific immune responses. In the pre-existing models, a monoclonal TCR is driven by a non-physiologic promoter and randomly integrated into the genome. Here, we create a highly efficient methodology to develop T cell receptor exchange (TRex) mice, in which TCRs, specific to the self/tumor antigen mesothelin (Msln), are integrated into the Trac locus, with concomitant Msln disruption to circumvent T cell tolerance.

View Article and Find Full Text PDF

Background: Consistent progress has been made to create more efficient and useful CRISPR-Cas9-based molecular toolsfor genomic modification.

Methods: This review focuses on recent articles that have employed base editors (BEs) for both clinical and research purposes.

Results: CRISPR-Cas9 BEs are a useful system because of their highefficiency and broad applicability to gene correction and disruption.

View Article and Find Full Text PDF

Monocytes and their downstream effectors are critical components of the innate immune system. Monocytes are equipped with chemokine receptors, allowing them to migrate to various tissues, where they can differentiate into macrophage and dendritic cell subsets and participate in tissue homeostasis, infection, autoimmune disease, and cancer. Enabling genome engineering in monocytes and their effector cells will facilitate a myriad of applications for basic and translational research.

View Article and Find Full Text PDF

Background: Adoptive transfer of tumor-infiltrating lymphocytes (TIL) fails to consistently elicit tumor rejection. Manipulation of intrinsic factors that inhibit T cell effector function and neoantigen recognition may therefore improve TIL therapy outcomes. We previously identified the cytokine-induced SH2 protein (CISH) as a key regulator of T cell functional avidity in mice.

View Article and Find Full Text PDF

Advances in genome and tissue engineering have spurred significant progress and opportunity for innovation in cancer modeling. Human induced pluripotent stem cells (iPSCs) are an established and powerful tool to study cellular processes in the context of disease-specific genetic backgrounds; however, their application to cancer has been limited by the resistance of many transformed cells to undergo successful reprogramming. Here, we review the status of human iPSC modeling of solid tumors in the context of genetic engineering, including how base and prime editing can be incorporated into "bottom-up" cancer modeling, a term we coined for iPSC-based cancer models using genetic engineering to induce transformation.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a rare genetic disease in which genes essential for DNA repair are mutated. Both the interstrand crosslink (ICL) and double-strand break (DSB) repair pathways are disrupted in FA, leading to patient bone marrow failure (BMF) and cancer predisposition. The only curative therapy for the hematological manifestations of FA is an allogeneic hematopoietic cell transplant (HCT); however, many (>70%) patients lack a suitable human leukocyte antigen (HLA)-matched donor, often resulting in increased rates of graft-versus-host disease (GvHD) and, potentially, the exacerbation of cancer risk.

View Article and Find Full Text PDF

Human primary natural killer (NK) cells are being widely advanced for cancer immunotherapy. However, methods for gene editing of these cells have suffered low transduction rates, high cell death, and loss of transgene expression after expansion. Here, we developed a highly efficient method for site-specific gene insertion in NK cells using CRISPR (Cas9/RNP) and AAVs.

View Article and Find Full Text PDF

More than 60% of hypertrophic cardiomyopathy (HCM)-causing mutations are found in the gene loci encoding cardiac myosin-associated proteins including myosin heavy chain (MHC) and myosin binding protein C (MyBP-C). Moreover, patients with more than one independent HCM mutation may be at increased risk for more severe disease expression and adverse outcomes. However detailed mechanistic understanding, especially at early stages of disease progression, is limited.

View Article and Find Full Text PDF

Here, we report that the LynB splice variant of the Src-family kinase Lyn exerts a dominant immunosuppressive function in vivo, whereas the LynA isoform is uniquely required to restrain autoimmunity in female mice. We used CRISPR-Cas9 gene editing to constrain splicing and expression, generating single-isoform LynA knockout (LynA) or LynB mice. Autoimmune disease in total Lyn mice is characterized by production of antinuclear antibodies, glomerulonephritis, impaired B cell development, and overabundance of activated B cells and proinflammatory myeloid cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontg6co8a0jgmiftcavgshqv81mjbgpqqo): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once