Background: Gene and RNA therapies have potential to transform the treatment of rare inherited diseases, but there are concerns about the evidence supporting their use and high costs.
Objective: We analyze the evidence supporting Food and Drug Administration (FDA) approval of gene and RNA therapies for rare inherited diseases and discuss implications for clinical practice and policy.
Methods: We conducted a qualitative analysis of FDA documents outlining the basis of approval for gene and RNA therapies approved for rare inherited diseases between 2016 and 2023.
High-throughput screening is a powerful platform that can rapidly provide valuable cytotoxic, immunological, and phenotypical information for thousands of compounds. Human peripheral blood mononuclear cells (PBMCs) cultured in autologous plasma can model the human immune response. Here, we describe a protocol to stimulate PBMCs for 72 h and measure cytokine secretion via AlphaLISA assays and cell surface activation marker expression via flow cytometry.
View Article and Find Full Text PDFInfection persists as one of the leading global causes of morbidity and mortality, with particular burden at the extremes of age and in populations who are immunocompromised or suffer chronic co-morbid diseases. By focusing discovery and innovation efforts to better understand the phenotypic and mechanistic differences in the immune systems of diverse vulnerable populations, emerging research in precision vaccine discovery and development has explored how to optimize immunizations across the lifespan. Here, we focus on two key elements of precision vaccinology, as applied to epidemic/pandemic response and preparedness, including (a) selecting robust combinations of adjuvants and antigens, and (b) coupling these platforms with appropriate formulation systems.
View Article and Find Full Text PDFMotivation: Vaccines are a key biomedical intervention to prevent the spread of infectious diseases, but their efficacy can be limited by insufficient immunogenicity and nonuniform reactogenic profiles. Adjuvants are molecules that potentiate vaccine responses by inducing innate immune activation. However, there are a limited number of adjuvants in approved vaccines, and current approaches for preclinical adjuvant discovery and development are inefficient.
View Article and Find Full Text PDFWe report here the synthesis and structure-activity relationship (SAR) of a novel series of triazole containing mammalian target of rapamycin (mTOR) kinase inhibitors. SAR studies examining the potency, selectivity, and PK parameters for a series of triazole containing 4,6- or 1,7-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones resulted in the identification of triazole containing mTOR kinase inhibitors with improved PK properties. Potent compounds from this series were found to block both mTORC1(pS6) and mTORC2(pAktS473) signaling in PC-3 cancer cells, in vitro and in vivo.
View Article and Find Full Text PDFWe report here the synthesis and structure-activity relationship (SAR) of a novel series of mammalian target of rapamycin (mTOR) kinase inhibitors. A series of 4,6- or 1,7-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones were optimized for in vivo efficacy. These efforts resulted in the identification of compounds with excellent mTOR kinase inhibitory potency, with exquisite kinase selectivity over the related lipid kinase PI3K.
View Article and Find Full Text PDFWe report here the discovery of a novel series of selective mTOR kinase inhibitors and the identification of CC214-2, a compound with demonstrated anti-tumor activity upon oral dosing in a PC3 prostate cancer xenograft model. A series of 4,6-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones were discovered through a core modification of our original compound series. Analogs from this series have excellent mTOR potency and maintain selectivity over the related PI3Kα lipid kinase.
View Article and Find Full Text PDFWe report here the discovery of a novel series of selective mTOR kinase inhibitors. A series of imidazo[4,5-b]pyrazin-2-ones, represented by screening hit 1, was developed into lead compounds with excellent mTOR potency and exquisite kinase selectivity. Potent compounds from this series show >1000-fold selectivity over the related PI3Kα lipid kinase.
View Article and Find Full Text PDF