Publications by authors named "Branden A Salinas"

During storage stability studies of a monoclonal antibody (mAb) it was determined that the primary route of degradation involved fragmentation into lower molecular weight species. The fragmentation was characterized with size-exclusion high performance liquid chromatography (SE-HPLC), SDS-PAGE, and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. Fragmentation proceeded via hydrolysis, likely catalyzed by trace metal ions, of a peptide bond in the hinge region of the mAb's heavy chain, which produced two prominent low molecular weight species during storage: a single, free Fab fragment and a Fab + Fc fragment.

View Article and Find Full Text PDF

Opalescence and high viscosities can pose challenges for high concentration formulation of antibodies. Both phenomena result from protein-protein intermolecular interactions that can be modulated with solution ionic strength. We studied a therapeutic monoclonal antibody (mAb) that exhibits high viscosity in solutions at low ionic strength ( approximately 20 cP at 90 mg/mL and 23 degrees C) and significant opalescence at isotonic ionic strength (approximately 100 nephelometric turbidity units at 90 mg/mL and 23 degrees C).

View Article and Find Full Text PDF