Publications by authors named "Brammer G"

The most distant galaxies detected were seen when the Universe was a scant 5% of its current age. At these times, progenitors of galaxies such as the Milky Way were about 10,000 times less massive. Using the James Webb Space Telescope (JWST) combined with magnification from gravitational lensing, these low-mass galaxies can not only be detected but also be studied in detail.

View Article and Find Full Text PDF
Article Synopsis
  • Recent observations from the James Webb Space Telescope (JWST) have found many massive-galaxy candidates in the early Universe, stretching further back in time and at lower brightness levels than previously seen.
  • These findings initially posed challenges to the Λ cold dark-matter model, but the new study's results show no significant conflicts when accounting for spectroscopic redshifts.
  • The research highlights three ultra-massive galaxies that convert a notably high percentage of baryons into stars, suggesting they play a significant role in cosmic star-formation rates at redshifts 5 to 6.
View Article and Find Full Text PDF

The Cosmic Gems arc is among the brightest and highly magnified galaxies observed at redshift z ≈ 10.2 (ref. ).

View Article and Find Full Text PDF

Primordial neutral atomic gas, mostly composed of hydrogen, is the raw material for star formation in galaxies. However, there are few direct constraints on the amount of neutral atomic hydrogen (H i) in galaxies at early cosmic times. We analyzed James Webb Space Telescope (JWST) near-infrared spectroscopy of distant galaxies, at redshifts ≳8.

View Article and Find Full Text PDF

The identification of sources driving cosmic reionization, a major phase transition from neutral hydrogen to ionized plasma around 600-800 Myr after the Big Bang, has been a matter of debate. Some models suggest that high ionizing emissivity and escape fractions (f) from quasars support their role in driving cosmic reionization. Others propose that the high f values from bright galaxies generate sufficient ionizing radiation to drive this process.

View Article and Find Full Text PDF

Here we present a sample of 12 massive quiescent galaxy candidates at [Formula: see text] observed with the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). These galaxies were pre-selected from the Hubble Space Telescope imaging and 10 of our sources were unable to be spectroscopically confirmed by ground based spectroscopy. By combining spectroscopic data from NIRSpec with multi-wavelength imaging data from the JWST Near Infrared Camera (NIRCam), we analyse their stellar populations and their formation histories.

View Article and Find Full Text PDF

Early JWST observations have uncovered a population of red sources that might represent a previously overlooked phase of supermassive black hole growth. One of the most intriguing examples is an extremely red, point-like object that was found to be triply imaged by the strong lensing cluster Abell 2744 (ref. ).

View Article and Find Full Text PDF

The formation of galaxies by gradual hierarchical co-assembly of baryons and cold dark matter halos is a fundamental paradigm underpinning modern astrophysics and predicts a strong decline in the number of massive galaxies at early cosmic times. Extremely massive quiescent galaxies (stellar masses of more than 10 M) have now been observed as early as 1-2 billion years after the Big Bang. These galaxies are extremely constraining on theoretical models, as they had formed 300-500 Myr earlier, and only some models can form massive galaxies this early.

View Article and Find Full Text PDF

One of the surprising results from the Hubble Space Telescope was the discovery that many of the most massive galaxies at redshift  ≈ 2 are very compact, having a half-light radius of only 1-2 kpc. The interpretation is that massive galaxies formed inside out, with their cores largely in place by  ≈ 2 and approximately half of their present-day mass added later through minor mergers. Here we present a compact, massive, quiescent galaxy at a photometric redshift of with a complete Einstein ring.

View Article and Find Full Text PDF

The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs), sources of high-frequency gravitational waves (GWs) and likely production sites for heavy-element nucleosynthesis by means of rapid neutron capture (the r-process). Here we present observations of the exceptionally bright GRB 230307A. We show that GRB 230307A belongs to the class of long-duration GRBs associated with compact object mergers and contains a kilonova similar to AT2017gfo, associated with the GW merger GW170817 (refs.

View Article and Find Full Text PDF

In the first billion years after the Big Bang, sources of ultraviolet (UV) photons are believed to have ionized intergalactic hydrogen, rendering the Universe transparent to UV radiation. Galaxies brighter than the characteristic luminosity L* (refs. ) do not provide enough ionizing photons to drive this cosmic reionization.

View Article and Find Full Text PDF

Ultraviolet light from early galaxies is thought to have ionized gas in the intergalactic medium. However, there are few observational constraints on this epoch because of the faintness of those galaxies and the redshift of their optical light into the infrared. We report the observation, in JWST imaging, of a distant galaxy that is magnified by gravitational lensing.

View Article and Find Full Text PDF

Galaxies with stellar masses as high as roughly 10 solar masses have been identified out to redshifts z of roughly 6, around 1 billion years after the Big Bang. It has been difficult to find massive galaxies at even earlier times, as the Balmer break region, which is needed for accurate mass estimates, is redshifted to wavelengths beyond 2.5 μm.

View Article and Find Full Text PDF

Understanding how super-massive black holes form and grow in the early Universe has become a major challenge since it was discovered that luminous quasars existed only 700 million years after the Big Bang. Simulations indicate an evolutionary sequence of dust-reddened quasars emerging from heavily dust-obscured starbursts that then transition to unobscured luminous quasars by expelling gas and dust. Although the last phase has been identified out to a redshift of 7.

View Article and Find Full Text PDF

Star formation in half of massive galaxies was quenched by the time the Universe was 3 billion years old. Very low amounts of molecular gas seem to be responsible for this, at least in some cases, although morphological gas stabilization, shock heating or activity associated with accretion onto a central supermassive black hole are invoked in other cases. Recent studies of quenching by gas depletion have been based on upper limits that are insufficiently sensitive to determine this robustly, or stacked emission with its problems of averaging.

View Article and Find Full Text PDF

Galaxy clusters are the most massive virialized structures in the Universe and are formed through the gravitational accretion of matter over cosmic time. The discovery of an evolved galaxy cluster at redshift z = 2, corresponding to a look-back time of 10.4 billion years, provides an opportunity to study its properties.

View Article and Find Full Text PDF

In the cold dark matter cosmology, the baryonic components of galaxies-stars and gas-are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius-a hallmark of the dark-matter model.

View Article and Find Full Text PDF

In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.

View Article and Find Full Text PDF

Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.

View Article and Find Full Text PDF

Phylogentic analyses are often incorrectly assumed to have stabilized to a single optimum. However, a set of trees from a phylogenetic analysis may contain multiple distinct local optima with each optimum providing different levels of support for each clade. For situations with multiple local optima, we propose p-support which is a clade support measure that shows the impact optima have on a final consensus tree.

View Article and Find Full Text PDF

Objectives: The aim of this work was to characterize patterns of late gadolinium enhancement (LGE) by cardiovascular magnetic resonance imaging in a hemodialysis population at high risk for cardiovascular events.

Background: The prevalence and distribution of LGE and its relationship to left ventricular mass (LVM) and function in this population is unknown.

Methods: Chronic hemodialysis patients at high risk for cardiovascular events-age >50 years, diabetes, or known cardiovascular disease-were enrolled prior to concerns regarding nephrogenic systemic fibrosis.

View Article and Find Full Text PDF

Background: Clinical and animal studies suggest that brain serotonergic systems may regulate aggressive behavior; however, the serotonin/violence hypothesis has not been assessed at the epidemiological level. For study of an epidemiological sample we examined blood serotonin, because certain physiological and behavioral findings suggested that it might serve as an analog marker for serotonergic function.

Methods: Whole blood serotonin was measured in a representative birth cohort of 781 21-year-old women (47%) and men (53%).

View Article and Find Full Text PDF

The present study examined the persistent functional consequences associated with exposure to single and multiple doses of (+/-) 3,4-methylenedioxymethamphetamine (MDMA) as reflected by the neuroendocrine responses to d,l-fenfluramine (FEN). Adult male rats were administered a single dose of MDMA (20 mg/kg, s.c.

View Article and Find Full Text PDF

The 27 amino acid peptide, pituitary adenylate cyclase-activating polypeptide (PACAP-27), and its 38 amino acid analogue, PACAP-38, stimulate serotonin-N-acetyltransferase (NAT) activity and N-acetylserotonin (NAS) and melatonin content of pineal glands from adult rats. Maximal stimulation of rat pineal NAT by PACAP-38 is not increased further significantly by concurrent stimulation with the two related peptides, vasoactive intestinal polypeptide (VIP) and/or peptide N-terminal histidine C-terminal isoleucine (PHI). Isoproterenol was a more potent inducer of NAT activity than any of these peptides alone or in combination.

View Article and Find Full Text PDF