Publications by authors named "Bramham C"

Activity-regulated cytoskeleton-associated protein (Arc), the product of an immediate early gene, plays critical roles in synaptic plasticity and memory. Evidence suggests that Arc function is determined by its oligomeric state; however, methods for localization of native Arc oligomers are lacking. Here, we developed a nanobody-based proximity ligation assay (PLA) for detection, localization, and quantification of Arc-Arc complexes in primary rat hippocampal neuronal cultures.

View Article and Find Full Text PDF

The activity-regulated cytoskeleton-associated protein (Arc) is a complex regulator of synaptic plasticity in glutamatergic neurons. Understanding its molecular function is key to elucidate the neurobiology of memory and learning, stress regulation, and multiple neurological and psychiatric diseases. The recent development of anti-Arc nanobodies has promoted the characterization of the molecular structure and function of Arc.

View Article and Find Full Text PDF

The activity-regulated cytoskeleton-associated (Arc) protein is essential for synaptic plasticity and memory formation. The Arc gene, which contains remnants of a structural GAG retrotransposon sequence, produces a protein that self-assembles into capsid-like structures harboring Arc mRNA. Arc capsids, released from neurons, have been proposed as a novel intercellular mechanism for mRNA transmission.

View Article and Find Full Text PDF

The immediate early gene product activity-regulated cytoskeleton-associated protein (Arc or Arg3.1) is a major regulator of long-term synaptic plasticity with critical roles in postnatal cortical development and memory formation. However, the molecular basis of Arc function is undefined.

View Article and Find Full Text PDF

The mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E), is crucial for translation and regulated by Ser209 phosphorylation. However, the biochemical and physiological role of eIF4E phosphorylation in translational control of long-term synaptic plasticity is unknown. We demonstrate that phospho-ablated Knockin mice are profoundly impaired in dentate gyrus LTP maintenance , whereas basal perforant path-evoked transmission and LTP induction are intact.

View Article and Find Full Text PDF

The immediate early gene, Arc, is a pivotal regulator of synaptic plasticity, memory, and cognitive flexibility. But what is Arc protein? How does it work? Inside the neuron, Arc is a protein interaction hub and dynamic regulator of intra-cellular signaling in synaptic plasticity. In remarkable contrast, Arc can also self-assemble into retrovirus-like capsids that are released in extracellular vesicles and capable of intercellular transfer of RNA.

View Article and Find Full Text PDF
Article Synopsis
  • Activity-regulated cytoskeleton-associated protein (Arc) is crucial for synaptic plasticity and memory but its function and structure are not fully understood.
  • Researchers created six anti-Arc nanobodies (Nb) and studied the structure of Arc's C-terminal domain (CTD) in complex with these Nbs, revealing dynamic conformations that may relate to Arc's role in capsid formation.
  • These anti-Arc Nbs are valuable for future research on Arc’s structure, function, and the mechanisms of capsid formation, potentially aiding in studies of neuronal function and plasticity.
View Article and Find Full Text PDF
Article Synopsis
  • The Arc protein is crucial for long-term synaptic plasticity and cognitive processes, but its mechanisms are not fully understood.
  • Researchers developed anti-Arc nanobodies (ArcNbs) from immunized alpacas to better explore Arc dynamics and functions, demonstrating their ability to bind to both recombinant and endogenous Arc.
  • The ArcNbs, particularly the ones tagged with a fluorescent protein, can be used to visualize and purify Arc in live cells, providing insights into its roles, including its retroviral-like properties.
View Article and Find Full Text PDF
Article Synopsis
  • - Spatial chromatin organization is essential for how genes are regulated in neurons, especially since these cells can change their gene expression when stimulated.
  • - Neuronal stimulation triggers the condensation of large chromatin domains quickly and reversibly, relying on energy and calcium pathways, but not on active transcription.
  • - The process involves changes in histone modifications and the spatial arrangement of chromosomes, with histone deacetylase HDAC1 playing a crucial role in this chromatin reorganization, affecting transcriptional regulation.
View Article and Find Full Text PDF

Synaptic plasticity is vital for brain function and memory formation. One of the key proteins in long-term synaptic plasticity and memory is the activity-regulated cytoskeleton-associated protein (Arc). Mammalian Arc forms virus-like capsid structures in a process requiring the N-terminal domain and contains two C-terminal lobes that are structural homologues to retroviral capsids.

View Article and Find Full Text PDF

The activity-regulated cytoskeleton-associated protein (Arc) is important for synaptic plasticity and the normal function of the brain. Arc interacts with neuronal postsynaptic proteins, but the mechanistic details of its function have not been fully established. The C-terminal domain of Arc consists of tandem domains, termed the N- and C-lobe.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) is a widespread neurotropic virus. Primary infection of HSV-1 in facial epithelium leads to retrograde axonal transport to the central nervous system (CNS) where it establishes latency. Under stressful conditions, the virus reactivates, and new progeny are transported anterogradely to the primary site of infection.

View Article and Find Full Text PDF

It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF.

View Article and Find Full Text PDF

Activity-regulated cytoskeleton-associated protein (Arc) is a protein interaction hub with diverse roles in intracellular neuronal signaling, and important functions in neuronal synaptic plasticity, memory, and postnatal cortical development. Arc has homology to retroviral Gag protein and is capable of self-assembly into virus-like capsids implicated in the intercellular transfer of RNA. However, the molecular basis of Arc self-association and capsid formation is largely unknown.

View Article and Find Full Text PDF

Arc (activity-regulated cytoskeleton-associated protein) is posited as a critical regulator of long-term synaptic plasticity at excitatory synapses, including long-term potentiation, long-term depression, inverse synaptic tagging and homoeostatic scaling, with pivotal roles in memory and postnatal cortical development. However, the mechanisms underlying the bidirectional regulation of synaptic strength are poorly understood. Here we review evidence from different plasticity paradigms, highlight outstanding issues and discuss stimulus-specific mechanisms that dictate Arc function.

View Article and Find Full Text PDF

AMPA receptors (AMPARs) are glutamate-gated ion channels that mediate the majority of fast excitatory synaptic transmission throughout the brain. Changes in the properties and postsynaptic abundance of AMPARs are pivotal mechanisms in synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission. A wide range of neurodegenerative, neurodevelopmental and neuropsychiatric disorders, despite their extremely diverse etiology, pathogenesis and symptoms, exhibit brain region-specific and AMPAR subunit-specific aberrations in synaptic transmission or plasticity.

View Article and Find Full Text PDF

Many occupations require operations during the night-time when the internal circadian clock promotes sleep, in many cases resulting in impairments in cognitive performance and brain functioning. Here, we use a rat model to attempt to identify the biological mechanisms underlying such impaired performance. Rats were exposed to forced activity, either in their rest-phase (simulating night-shift work; rest work) or in their active-phase (simulating day-shift work; active work).

View Article and Find Full Text PDF

Levels of adult neurogenesis in the dentate gyrus (DG) of the hippocampus are correlated with unique cognitive functions. However, the molecular pathways controlling it are poorly understood. Here, we found that the known physiological ways to enhance neurogenesis converged on the eEF2/eEF2K pathway via AMPK in the DG.

View Article and Find Full Text PDF

BDNF signaling via its transmembrane receptor TrkB has an important role in neuronal survival, differentiation, and synaptic plasticity. Remarkably, BDNF is capable of modulating its own expression levels in neurons, forming a transcriptional positive feedback loop. In the current study, we have investigated this phenomenon in primary cultures of rat cortical neurons using overexpression of dominant-negative forms of several transcription factors, including CREB, ATF2, C/EBP, USF, and NFAT.

View Article and Find Full Text PDF

Background: Primary neuronal cultures are widely used to elucidate fundamental aspects of neuronal anatomy, physiology, cell biology, and neuronal dysfunction in animal models of disease. However, preparation of primary neuronal cultures from rodent embryos is labor-intensive, and it is often difficult to produce high-quality cultures consistently in a single laboratory, and to compare results between laboratories. To overcome these issues, cryopreservation can be used to obtain more standardized, high-quality banks of neuronal cultures.

View Article and Find Full Text PDF