Crit Rev Biotechnol
November 2022
Proteins are known to play important roles in the biosynthesis of metallic nanoparticles (NPs), which are biological substitutes for conventionally used chemical capping and stabilizing agents. When a pristine nanoparticle comes in contact with a biological media or system, a bimolecular layer is formed on the surface of the nanoparticle and is primarily composed of proteins. The role of proteins in the biosynthesis and further uptake, translocation, and bio-recognition of nanoparticles is documented in the literature.
View Article and Find Full Text PDFThe elevated cases of arsenic contamination reported across the globe have made its early detection and remediation an active area of research. Although, the World Health Organisation has set the maximum provisional value for arsenic in drinking water at 10 parts per billion, yet concentrations as high as 5000 parts per billion are still reported. In human beings, chronic arsenic exposure can culminate into lethal diseases such as cancer.
View Article and Find Full Text PDFSilver-based nanostructures are suitable for many biomedical applications, but to be useful therapeutic agents, the high toxicity of these nanomaterials must be eliminated. Here, we biosynthesize nontoxic and ultra-small silver nanoclusters (rsAg@NCs) using metabolites of usnioid lichen (a symbiotic association of algae and fungi) that exhibit excellent antimicrobial activity against fluconazole (FCZ)-resistant that is many times higher than chemically synthesized silver nanoparticles (AgNPs) and FCZ. The rsAg@NCs trigger apoptosis via reactive oxygen species accumulation that leads to the loss of mitochondrial membrane potential, DNA fragmentation, chromosomal condensation, and the activation of metacaspases.
View Article and Find Full Text PDFParkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra of the midbrain. Dopamine agonists help the patients with PD by reversing the dopamine depletion and related motor deficits. In the present work, cabergoline, a potent ergot dopamine agonist, was given in the form of cabergoline alginate nanocomposite (CANC) to the PD model flies to study its effects on climbing ability, activity pattern, life span, lipid peroxidation, glutathione (GSH) content, glutathione-S-transferase (GST) activity, dopamine content, protein carbonyl content, mean gray-scale values, and caspase-3 and caspase-9 activities.
View Article and Find Full Text PDFIn this study, an ecofriendly and economically viable waste management approach have been attempted towards the biosynthesis of agriculturally important nanoparticles from jarosite waste. Aspergillus terreus strain J4 isolated from jarosite (waste from Debari Zinc Smelter, Udaipur, India), showed good leaching efficiency along with nanoparticles (NPs) formation under ambient conditions. Fourier-transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM) confirmed the formation of NPs.
View Article and Find Full Text PDFMicrobial hydrophobin (MH)-based surface coating is emerging as a novel protein engineering approach for drug nanoparticles to enhance the solubility and stability of therapeutic agents. These hydrophobins are amphiphilic proteins that can form self-assembled monolayers on hydrophobic materials and can coat nanoparticles for efficient drug delivery.
View Article and Find Full Text PDFMining waste such as iron ore tailing is environmentally hazardous, encouraging researchers to develop effective bioremediation technologies. Among the microbial isolates collected from iron ore tailings, Aspergillus aculeatus (strain T6) showed good leaching efficiency and produced iron-containing nanoparticles under ambient conditions. This strain can convert iron ore tailing waste into agriculturally useful nanoparticles.
View Article and Find Full Text PDFIn this research work different shapes and sizes of gold nanoparticles (AuNPs) were synthesized through an intracellular biogenic approach, exploiting the chloroauric acid reducing and Au stabilizing potential of EM-1083 mycelia. The intracellularly synthesized AuNPs exhibits anti-quorum sensing inhibitory potential against The synthesized AuNPs were characterized using UV-visible spectroscopy; transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. The characterization proved that the successful synthesis of highly stable crystalline AuNPs with various shapes.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2017
Honey is an excellent source of polyphenolic compounds that are effective in attenuating quorum sensing (QS), a chemical process of cell-to-cell communication system used by the opportunistic pathogen to regulate virulence and biofilm formation. However, lower water solubility and inadequate bioavailability remains major concerns of these therapeutic polyphenols. Its therapeutic index can be improved by using nano-carrier systems to target QS signaling potently.
View Article and Find Full Text PDFStenotrophomonas sp. is emerging as a popular microbe of global concern with various potential ecological roles. Biosynthesis of gold and silver nanoparticles (AgNPs) using this bacterial strain has shown promising applications in life sciences.
View Article and Find Full Text PDFDespite several conventional potent antibacterial therapies, bacterial infections pose a significant threat to human health because they are emerging as the leading cause of death worldwide. Due to the development of antibiotic resistance in bacteria, there is a pressing demand to discover novel approaches for developing more effective therapies to treat multidrug-resistant bacterial strains and biofilm-associated infections. Therefore, attention has been especially devoted to a new and emerging branch of science "nanotechnology" to design non-conventional antimicrobial chemotherapies.
View Article and Find Full Text PDFThe effect of bromocriptine, a dopamine agonist, administered in the form of bromocriptine alginate nanocomposite (BANC) was studied on Parkinson's disease (PD) model flies. The synthesized BANC was subject to characterization and, at a final concentration of 0.5, 1.
View Article and Find Full Text PDFQuorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS.
View Article and Find Full Text PDFThe study was taken up with the objective to synthesize graphene-zinc oxide nano particles (NPs) nanocomposite (Gr@ZnO-Nc) via In-situ synthesis method. The structural, optical, thermal, electrical and photocatalytic properties of the synthesized Gr@ZnO-Nc were studied. The characterization data confirmed that the ZnO NPs were successfully incorporated into the graphene sheets.
View Article and Find Full Text PDFHelminth parasites of veterinary importance cause huge revenue losses to agrarian economy worldwide. With the emergence of drug resistance against the current formulations, there is a need to focus on the alternative approaches in order to control this menace. In the present study, biocompatible zinc oxide nanoparticles (ZnO NPs) were used to see their in vitro effect on the biliary amphistomes, Gigantocotyle explanatum, infecting Bubalus bubalis because these nanoparticles are involved in generation of free radicals that induce oxidative stress, resulting in disruption of cellular machinery.
View Article and Find Full Text PDFCandida albicans is a diploid fungus that causes common infections such as denture stomatitis, thrush, urinary tract infections, etc. Immunocompromised patients can become severely infected by this fungus. Development of an effective anticandidal agent against this pathogenic fungus, therefore, will be very useful for practical application.
View Article and Find Full Text PDFAims: In the present study, copper-doped ZnO nanoparticles (doped ZnO NPs Cu) were synthesized, characterized and evaluated for their possible toxic effects in Drosophila melanogaster (Oregon R).
Methods And Results: X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectrometry confirm the formation of doped ZnO NPs Cu. Doped ZnO NPs Cu (3%) were mixed in the diet at final concentrations of 1, 2, 4 and 8 µg/µl.
Oral biofilms play a crucial role in the development of dental caries and other periodontal diseases. Streptococcus mutans is one of the primary etiological agents in dental caries. Implant systems are regularly employed to replace missing teeth.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2015
A novel visible light active and magnetically separable nanophotocatalyst, Ni0.5Zn0.5Fe2O4/Zn0.
View Article and Find Full Text PDFDuring the last several years, various chemical methods have been used for synthesis of a variety of metal nanoparticles. Most of these methods pose severe environmental problems and biological risks; therefore the present study reports a biological route for synthesis of zinc oxide nanoparticles using Pseudomonas aeruginosa rhamnolipids (RLs) (denoted as RL@ZnO) and their antioxidant property. Formation of stable RL@ZnO nanoparticles gave mostly spherical particles with a particle size ranging from 35 to 80 nm.
View Article and Find Full Text PDFIn the present study the graphene zinc oxide nanocomposite (GZNC) was synthesized, characterized, and evaluated for its toxic potential on third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg(9). The synthesized GZNC was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The GZNC in 0.
View Article and Find Full Text PDFThe present study is focused on the extracellular synthesis of silver nanoparticles (AgNPs) using culture supernatant of an agriculturally important bacterium, Serratia sp. BHU-S4 and demonstrates its effective application for the management of spot blotch disease in wheat. The biosynthesis of AgNPs by Serratia sp.
View Article and Find Full Text PDFCancer metastasis is a multistep process in which a cancer cell spreads from the site of the primary lesion, passes through the circulatory system, and establishes a secondary tumor at a new nonadjacent organ or part. Inhibition of cancer progression by dietary phytochemicals (DPs) offers significant promise for reducing the incidence and mortality of cancer. Consumption of DPs in the diet has been linked to a decrease in the rate of metastatic cancer in a number of preclinical animal models and human epidemiological studies.
View Article and Find Full Text PDFGraphene, a two-dimensional carbon sheet with single-atom thickness, have attracted the scientific world for its potential applications in various field including the biomedical areas. In the present study the graphene copper nanocomposite (GCNC) was synthesized, characterized and evaluated for its toxic potential on third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg(9) . The synthesized GCNC was analyzed by X-ray diffraction (XRD), scanning/transmission electron microscopy (SEM/TEM), atomic force microscopy (AFM), and fourier transform infrared spectroscopy (FTIR).
View Article and Find Full Text PDFThe genetic models in Drosophila provide a platform to understand the mechanism associated with degenerative diseases. The model for Parkinson's disease (PD) based on normal human alpha-synuclein ( α S) expression was used in the present study. The aggregation of α S in brain leads to the formation of Lewy bodies and selective loss of dopaminergic neurons due to oxidative stress.
View Article and Find Full Text PDF