Sensitivity to interaural time differences (ITDs) in envelope and temporal fine structure (TFS) of amplitude-modulated (AM) tones was assessed for young and older subjects, all with clinically normal hearing at the carrier frequencies of 250 and 500 Hz. Some subjects had hearing loss at higher frequencies. In experiment 1, thresholds for detecting changes in ITD were measured when the ITD was present in the TFS alone (ITD), the envelope alone (ITD), or both (ITD).
View Article and Find Full Text PDFThe masking release (i.e., better speech recognition in fluctuating compared to continuous noise backgrounds) observed for normal-hearing (NH) listeners is generally reduced or absent in hearing-impaired (HI) listeners.
View Article and Find Full Text PDFThe masking release (MR; i.e., better speech recognition in fluctuating compared with continuous noise backgrounds) that is evident for listeners with normal hearing (NH) is generally reduced or absent for listeners with sensorineural hearing impairment (HI).
View Article and Find Full Text PDFAcoustic speech is marked by time-varying changes in the amplitude envelope that may pose difficulties for hearing-impaired listeners. Removal of these variations (e.g.
View Article and Find Full Text PDFInt J Eng Technol Sci Innov
April 2016
The perceptual integration of 50- and 250-Hz, 500-ms vibrotactile and auditory tones was studied in detection experiments as a function of the relative phase (0°, 72°, 144°, 216°, and 288°) of the tone pulses. Vibrotactile stimuli were delivered through a single-channel vibrator to the left middle fingertip and auditory stimuli were presented diotically through headphones in a background of 50 dB SPL broadband noise. The observers were four adults with normal hearing.
View Article and Find Full Text PDFConsonant-identification ability was examined in normal-hearing (NH) and hearing-impaired (HI) listeners in the presence of steady-state and 10-Hz square-wave interrupted speech-shaped noise. The Hilbert transform was used to process speech stimuli (16 consonants in a-C-a syllables) to present envelope cues, temporal fine-structure (TFS) cues, or envelope cues recovered from TFS speech. The performance of the HI listeners was inferior to that of the NH listeners both in terms of lower levels of performance in the baseline condition and in the need for higher signal-to-noise ratio to yield a given level of performance.
View Article and Find Full Text PDFNarrowband speech can be separated into fast temporal cues [temporal fine structure (TFS)], and slow amplitude modulations (envelope). Speech processed to contain only TFS leads to envelope recovery through cochlear filtering, which has been suggested to account for TFS-speech intelligibility for normal-hearing listeners. Hearing-impaired listeners have deficits with TFS-speech identification, but the contribution of recovered-envelope cues to these deficits is unknown.
View Article and Find Full Text PDFIn this research, we explored the effect of noise interruption rate on speech intelligibility. Specifically, we used the Hearing In Noise Test (HINT) procedure with the original HINT stimuli (English) and Igbo stimuli to assess speech reception ability in interrupted noise. For a given noise level, the HINT test provides an estimate of the signal-to-noise ratio (SNR) required for 50%-correct speech intelligibility.
View Article and Find Full Text PDFThe contribution of recovered envelopes (RENVs) to the utilization of temporal-fine structure (TFS) speech cues was examined in normal-hearing listeners. Consonant identification experiments used speech stimuli processed to present TFS or RENV cues. Experiment 1 examined the effects of exposure and presentation order using 16-band TFS speech and 40-band RENV speech recovered from 16-band TFS speech.
View Article and Find Full Text PDFTemporal processing ability for the senses of hearing and touch was examined through the measurement of gap-duration discrimination thresholds (GDDTs) employing the same low-frequency sinusoidal stimuli in both modalities. GDDTs were measured in three groups of observers (normal-hearing, hearing-impaired, and normal-hearing with simulated hearing loss) covering an age range of 21-69 yr. GDDTs for a baseline gap of 6 ms were measured for four different combinations of 100-ms leading and trailing markers (250-250, 250-400, 400-250, and 400-400 Hz).
View Article and Find Full Text PDFThis article introduces and provides an assessment of a spatial-filtering algorithm based on two closely-spaced (∼1 cm) microphones in a behind-the-ear shell. The evaluated spatial-filtering algorithm used fast (∼10 ms) temporal-spectral analysis to determine the location of incoming sounds and to enhance sounds arriving from straight ahead of the listener. Speech reception thresholds (SRTs) were measured for eight cochlear implant (CI) users using consonant and vowel materials under three processing conditions: An omni-directional response, a dipole-directional response, and the spatial-filtering algorithm.
View Article and Find Full Text PDFThe purpose of this study is to identify precise and repeatable measures for assessing cochlear-implant (CI) hearing. The study presents psychoacoustic and phoneme identification measures in CI and normal-hearing (NH) listeners, with correlations between measures examined. Psychoacoustic measures included pitch discrimination tasks using pure tones, harmonic complexes, and tone pips; intensity perception tasks included intensity discrimination for tones and modulation detection; spectral-temporal masking tasks included gap detection, forward and backward masking, tone-on-tone masking, synthetic formant-on-formant masking, and tone in noise detection.
View Article and Find Full Text PDFIt is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination.
View Article and Find Full Text PDFFunctional simulation of sensorineural hearing impairment is an important research tool that can elucidate the nature of hearing impairments and suggest or eliminate compensatory signal-processing schemes. The objective of the current study was to evaluate the capability of an audibility-based functional simulation of hearing loss to reproduce the auditory-filter characteristics of listeners with sensorineural hearing loss. The hearing-loss simulation used either threshold-elevating noise alone or a combination of threshold-elevating noise and multiband expansion to reproduce the audibility-based characteristics of the loss (including detection thresholds, dynamic range, and loudness recruitment).
View Article and Find Full Text PDFA functional simulation of hearing loss was evaluated in its ability to reproduce the temporal masking functions for eight listeners with mild to severe sensorineural hearing loss. Each audiometric loss was simulated in a group of age-matched normal-hearing listeners through a combination of spectrally-shaped masking noise and multi-band expansion. Temporal-masking functions were obtained in both groups of listeners using a forward-masking paradigm in which the level of a 110-ms masker required to just mask a 10-ms fixed-level probe (5-10 dB SL) was measured as a function of the time delay between the masker offset and probe onset.
View Article and Find Full Text PDFA functional simulation of hearing loss was evaluated in its ability to reproduce the temporal modulation transfer functions (TMTFs) for nine listeners with mild to profound sensorineural hearing loss. Each hearing loss was simulated in a group of three age-matched normal-hearing listeners through spectrally shaped masking noise or a combination of masking noise and multiband expansion. TMTFs were measured for both groups of listeners using a broadband noise carrier as a function of modulation rate in the range 2 to 1024 Hz.
View Article and Find Full Text PDFPerceptual integration of vibrotactile and auditory sinusoidal tone pulses was studied in detection experiments as a function of stimulation frequency. Vibrotactile stimuli were delivered through a single channel vibrator to the left middle fingertip. Auditory stimuli were presented diotically through headphones in a background of 50 dB sound pressure level broadband noise.
View Article and Find Full Text PDFThe loudness of auditory (A), tactile (T), and auditory-tactile (A+T) stimuli was measured at supra-threshold levels. Auditory stimuli were pure tones presented binaurally through headphones; tactile stimuli were sinusoids delivered through a single-channel vibrator to the left middle fingertip. All stimuli were presented together with a broadband auditory noise.
View Article and Find Full Text PDFJ Speech Lang Hear Res
June 2011
Purpose: Improved speech recognition in binaurally combined acoustic-electric stimulation (otherwise known as bimodal hearing) could arise when listeners integrate speech cues from the acoustic and electric hearing. The aims of this study were (a) to identify speech cues extracted in electric hearing and residual acoustic hearing in the low-frequency region and (b) to investigate cochlear implant (CI) users' ability to integrate speech cues across frequencies.
Method: Normal-hearing (NH) and CI subjects participated in consonant and vowel identification tasks.
The effects of audibility and age on masking for sentences in continuous and interrupted noise were examined in listeners with real and simulated hearing loss. The absolute thresholds of each of ten listeners with sensorineural hearing loss were simulated in normal-hearing listeners through a combination of spectrally-shaped threshold noise and multi-band expansion for octave bands with center frequencies from 0.25-8 kHz.
View Article and Find Full Text PDFTo guide the development of tactile speech aids, tactual detection and temporal order discrimination by congenitally deaf and normal-hearing adults have been examined. Tactual detection thresholds for sinusoidal vibrations between 2 and 300 Hz were measured at the left thumb and index finger using an adaptive paradigm. Temporal onset- and offset-order discrimination were tested using stimuli of 50 Hz at the thumb and 250 Hz at the index finger, delivered asynchronously and varied independently in amplitude and duration.
View Article and Find Full Text PDFThe perceptual integration of 250 Hz, 500 ms vibrotactile and auditory tones was studied in detection experiments as a function of (1) relative phase and (2) temporal asynchrony of the tone pulses. Vibrotactile stimuli were delivered through a single-channel vibrator to the left middle fingertip and auditory stimuli were presented diotically through headphones in a background of 50 dB sound pressure level broadband noise. The vibrotactile and auditory stimulus levels used each yielded 63%-77%-correct unimodal detection performance in a 2-I, 2-AFC task.
View Article and Find Full Text PDFIn adverse listening conditions, talkers can increase their intelligibility by speaking clearly [Picheny, M.A., et al.
View Article and Find Full Text PDFA critical review of studies of temporal resolution in listeners with cochlear hearing impairment is presented with the aim of assessing evidence for suprathreshold deficits. Particular attention is paid to the roles of variables-such as stimulus audibility, overall stimulus level, and participant's age-which may complicate the interpretation of experimental findings in comparing the performance of hearing-impaired (HI) and normal-hearing (NH) listeners. On certain temporal tasks (e.
View Article and Find Full Text PDFWe present original results and review literature from the past fifty years that address the role of primate auditory cortex in the following perceptual capacities: (1) the ability to perceive small differences between the pitches of two successive tones; (2) the ability to perceive the sign (i.e., direction) of the pitch difference [higher (+) vs.
View Article and Find Full Text PDF