Publications by authors named "Braicovich L"

We have investigated the 3d orbital excitations in CaCuO_{2} (CCO), Nd_{2}CuO_{4} (NCO), and La_{2}CuO_{4} (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the d_{xy} orbital clearly disperses, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen.

View Article and Find Full Text PDF

The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that the recently discovered charge density fluctuations (CDF) possess the right properties to be associated to a quantum phase transition.

View Article and Find Full Text PDF

The normal state of optimally doped cuprates is dominated by the “strange metal” phase that shows a linear temperature () dependence of the resistivity persisting down to the lowest For underdoped cuprates, this behavior is lost below the pseudogap temperature *, where charge density waves (CDWs), together with other intertwined local orders, characterize the ground state. We found that the -linear resistivity of highly strained, ultrathin, underdoped YBaCuO films is restored when the CDW amplitude, detected by resonant inelastic x-ray scattering, is suppressed. This observation suggests an intimate connection between the onset of CDWs and the departure from -linear resistivity in underdoped cuprates.

View Article and Find Full Text PDF

We report a comprehensive Cu L_{3}-edge resonant x-ray scattering (RXS) study of two- and three-dimensional (2D and 3D) incommensurate charge correlations in single crystals of the underdoped high-temperature superconductor YBa_{2}Cu_{3}O_{6.67} under uniaxial compression up to 1% along the two inequivalent Cu─O─Cu bond directions (a and b) in the CuO_{2} planes. We confirm the strong in-plane anisotropy of the 2D charge correlations and observe their symmetric response to pressure: pressure along a enhances correlations along b, and vice versa.

View Article and Find Full Text PDF

Despite its simple structure and low degree of electronic correlation, SrTiO_{3} (STO) features collective phenomena linked to charge transport and, ultimately, superconductivity, that are not yet fully explained. Thus, a better insight into the nature of the quasiparticles shaping the electronic and conduction properties of STO is needed. We studied the low-energy excitations of bulk STO and of the LaAlO_{3}/SrTiO_{3} two-dimensional electron gas (2DEG) by Ti L_{3} edge resonant inelastic x-ray scattering.

View Article and Find Full Text PDF

Epitaxial films of high critical temperature ( T c ) cuprate superconductors preserve their transport properties even when their thickness is reduced to a few nanometers. However, when approaching the single crystalline unit cell (u.c.

View Article and Find Full Text PDF

Charge density modulations have been observed in all families of high-critical temperature ( ) superconducting cuprates. Although they are consistently found in the underdoped region of the phase diagram and at relatively low temperatures, it is still unclear to what extent they influence the unusual properties of these systems. Using resonant x-ray scattering, we carefully determined the temperature dependence of charge density modulations in YBaCuO and Nd Ba CuO for several doping levels.

View Article and Find Full Text PDF

We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorption resonance. We apply it to the cuprate parent compound NdBa_{2}Cu_{3}O_{6} and find that the electronic coupling to the oxygen half-breathing phonon branch is strongest at the Brillouin zone boundary, where it amounts to ∼0.17  eV, in agreement with previous studies.

View Article and Find Full Text PDF
Article Synopsis
  • Cobalt ferrite nanoparticles are gaining attention for their potential uses in areas like magnetic storage, hyperthermia, and MRI contrast agents.
  • The study utilized Resonant Inelastic Soft X-ray Scattering to analyze the cation distribution in 5 nm cobalt-doped maghemite nanoparticles as cobalt concentration varied.
  • Findings showed that the distribution of divalent cobalt remains stable across different doping levels, suggesting that cobalt doping can adjust the magnetic properties of these nanoparticles while keeping their structural integrity intact.
View Article and Find Full Text PDF

High-temperature copper oxide superconductors consist of stacked CuO planes, with electronic band structures and magnetic excitations that are primarily two-dimensional, but with superconducting coherence that is three-dimensional. This dichotomy highlights the importance of out-of-plane charge dynamics, which has been found to be incoherent in the normal state within the limited range of momenta accessible by optics. Here we use resonant inelastic X-ray scattering to explore the charge dynamics across all three dimensions of the Brillouin zone.

View Article and Find Full Text PDF

In the underdoped regime, the cuprate high-temperature superconductors exhibit a host of unusual collective phenomena, including unconventional spin and charge density modulations, Fermi surface reconstructions, and a pseudogap in various physical observables. Conversely, overdoped cuprates are generally regarded as conventional Fermi liquids possessing no collective electronic order. In partial contradiction to this widely held picture, we report resonant X-ray scattering measurements revealing incommensurate charge order reflections for overdoped (Bi,Pb)SrCuO (Bi2201), with correlation lengths of 40-60 lattice units, that persist up to temperatures of at least 250 K.

View Article and Find Full Text PDF

Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate LaBaCuO across its ordering transition.

View Article and Find Full Text PDF

Spin excitations in the overdoped high temperature superconductors Tl_{2}Ba_{2}CuO_{6+δ} and (Bi,Pb)_{2}(Sr,La)_{2}CuO_{6+δ} were investigated by resonant inelastic x-ray scattering (RIXS) as functions of doping and detuning of the incoming photon energy above the Cu-L_{3} absorption peak. The RIXS spectra at optimal doping are dominated by a paramagnon feature with peak energy independent of photon energy, similar to prior results on underdoped cuprates. Beyond optimal doping, the RIXS data indicate a sharp crossover to a regime with a strong contribution from incoherent particle-hole excitations whose maximum shows a fluorescencelike shift upon detuning.

View Article and Find Full Text PDF

A software with a graphical user interface has been developed with the aim of facilitating the data analysis for users of a new resonant inelastic X-ray scattering (RIXS) spectrometer installed at the ESRF beamline ID32. The software is organized in modules covering all relevant steps in the data reduction from a stack of several hundred two-dimensional CCD images to a single RIXS spectrum. It utilizes both full charge integration and single-photon centroiding to cope with high-flux and high-resolution requirements.

View Article and Find Full Text PDF

We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa_{2}Cu_{3}O_{6+x} over a wide range of doping levels (0.1≤x≤1). The excitation profiles were carefully monitored as the incident photon energy was detuned from the resonant condition, and the spin excitation energy was found to be independent of detuning for all x.

View Article and Find Full Text PDF

Electronic inhomogeneity appears to be an inherent characteristic of the enigmatic cuprate superconductors. Here we report the observation of charge-density-wave correlations in the model cuprate superconductor HgBa2CuO(4+δ) (T(c)=72 K) via bulk Cu L3-edge-resonant X-ray scattering. At the measured hole-doping level, both the short-range charge modulations and Fermi-liquid transport appear below the same temperature of about 200 K.

View Article and Find Full Text PDF

Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization.

View Article and Find Full Text PDF

Taking spinon excitations in the quantum antiferromagnet CaCu2O3 as an example, we demonstrate that femtosecond dynamics of magnetic electronic excitations can be probed by direct resonant inelastic x-ray scattering (RIXS). To this end, we isolate the contributions of single and double spin-flip excitations in experimental RIXS spectra, identify the physical mechanisms that cause them, and determine their respective time scales. By comparing theory and experiment, we find that double spin flips need a finite amount of time to be generated, rendering them sensitive to the core-hole lifetime, whereas single spin flips are, to a very good approximation, independent of it.

View Article and Find Full Text PDF

The evolution of electronic (spin and charge) excitations upon carrier doping is an extremely important issue in superconducting layered cuprates and the knowledge of its asymmetry between electron- and hole-dopings is still fragmentary. Here we combine X-ray and neutron inelastic scattering measurements to track the doping dependence of both spin and charge excitations in electron-doped materials. Copper L3 resonant inelastic X-ray scattering spectra show that magnetic excitations shift to higher energy upon doping.

View Article and Find Full Text PDF

V L3 edge resonant inelastic x-ray scattering measurements performed on high quality BaVS3 single crystals reveal that the intra-t2g dd excitations close to the elastic peak are suppressed below the metal-insulator transition induced by the Peierls instability. The depletion of electronic states close to the Fermi level represents a direct observation of the opening of a charge gap inside the t2g manifold.

View Article and Find Full Text PDF

One of the most intensely studied scenarios of high-temperature superconductivity (HTS) postulates pairing by exchange of magnetic excitations. Indeed, such excitations have been observed up to optimal doping in the cuprates. In the heavily overdoped regime, neutron scattering measurements indicate that magnetic excitations have effectively disappeared, and this has been argued to cause the demise of HTS with overdoping.

View Article and Find Full Text PDF

We use resonant x-ray scattering to determine the momentum-dependent charge correlations in YBa(2)Cu(3) O(6.55) samples with highly ordered chain arrays of oxygen acceptors (ortho-II structure). The results reveal nearly critical, biaxial charge density wave (CDW) correlations at in-plane wave vectors (0.

View Article and Find Full Text PDF

Recently, charge density wave (CDW) order in the CuO(2) planes of underdoped YBa(2)Cu(3)O(6+δ) was detected using resonant soft x-ray scattering. An important question remains: is the chain layer responsible for this charge ordering? Here, we explore the energy and polarization dependence of the resonant scattering intensity in a detwinned sample of YBa(2)Cu(3)O(6.75) with ortho-III oxygen ordering in the chain layer.

View Article and Find Full Text PDF

The concept that superconductivity competes with other orders in cuprate superconductors has become increasingly apparent, but obtaining direct evidence with bulk-sensitive probes is challenging. We have used resonant soft x-ray scattering to identify two-dimensional charge fluctuations with an incommensurate periodicity of ~3.2 lattice units in the copper-oxide planes of the superconductors (Y,Nd)Ba(2)Cu(3)O(6+)(x), with hole concentrations of 0.

View Article and Find Full Text PDF

Polarization dependent vanadium L edge x-ray absorption spectra of BaVS(3) single crystals are measured in the four phases of the compound. The difference between signals with the polarizations E perpendicular to c and E is parallel to c (linear dichroism) changes with temperature. Besides increasing the intensity of one of the maxima, a new structure appears in the pre-edge region below the metal-insulator transition.

View Article and Find Full Text PDF